369498
Oxidising power of chlorine in aqueous solution can be determined by the parameters indicated below:
\(\frac{{\rm{1}}}{{\rm{2}}}{\rm{C}}{{\rm{l}}_{\rm{2}}}({\rm{g}}) \to {\rm{C}}{{\rm{l}}^{{\rm{ - }}}}({\rm{aq}})\)
(using the data,
\(\mathrm{\Delta_{\text {diss }} H_{C l_{2}}^{o}=240 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta_{e g} H_{C l}^{o}=-349 \mathrm{~kJ} \mathrm{~mol}^{-1}}\),
\(\mathrm{\left.\Delta_{h y d} H_{C l^{-}}^{o}=-381 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)}\), will be
369500
Given :
(I) \(\mathrm{\mathrm{H}_{2}(g)+\dfrac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)}\);
\(\mathrm{\Delta H_{298 K}^{o}=-285.9 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
(II) \(\mathrm{\mathrm{H}_{2}(g)+\dfrac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(g)}\);
\(\mathrm{\Delta H_{298 \mathrm{~K}}^{o}=-241.8 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
The molar enthalpy of vapourisation of water will be :
369498
Oxidising power of chlorine in aqueous solution can be determined by the parameters indicated below:
\(\frac{{\rm{1}}}{{\rm{2}}}{\rm{C}}{{\rm{l}}_{\rm{2}}}({\rm{g}}) \to {\rm{C}}{{\rm{l}}^{{\rm{ - }}}}({\rm{aq}})\)
(using the data,
\(\mathrm{\Delta_{\text {diss }} H_{C l_{2}}^{o}=240 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta_{e g} H_{C l}^{o}=-349 \mathrm{~kJ} \mathrm{~mol}^{-1}}\),
\(\mathrm{\left.\Delta_{h y d} H_{C l^{-}}^{o}=-381 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)}\), will be
369500
Given :
(I) \(\mathrm{\mathrm{H}_{2}(g)+\dfrac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)}\);
\(\mathrm{\Delta H_{298 K}^{o}=-285.9 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
(II) \(\mathrm{\mathrm{H}_{2}(g)+\dfrac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(g)}\);
\(\mathrm{\Delta H_{298 \mathrm{~K}}^{o}=-241.8 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
The molar enthalpy of vapourisation of water will be :
369498
Oxidising power of chlorine in aqueous solution can be determined by the parameters indicated below:
\(\frac{{\rm{1}}}{{\rm{2}}}{\rm{C}}{{\rm{l}}_{\rm{2}}}({\rm{g}}) \to {\rm{C}}{{\rm{l}}^{{\rm{ - }}}}({\rm{aq}})\)
(using the data,
\(\mathrm{\Delta_{\text {diss }} H_{C l_{2}}^{o}=240 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta_{e g} H_{C l}^{o}=-349 \mathrm{~kJ} \mathrm{~mol}^{-1}}\),
\(\mathrm{\left.\Delta_{h y d} H_{C l^{-}}^{o}=-381 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)}\), will be
369500
Given :
(I) \(\mathrm{\mathrm{H}_{2}(g)+\dfrac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)}\);
\(\mathrm{\Delta H_{298 K}^{o}=-285.9 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
(II) \(\mathrm{\mathrm{H}_{2}(g)+\dfrac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(g)}\);
\(\mathrm{\Delta H_{298 \mathrm{~K}}^{o}=-241.8 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
The molar enthalpy of vapourisation of water will be :
369498
Oxidising power of chlorine in aqueous solution can be determined by the parameters indicated below:
\(\frac{{\rm{1}}}{{\rm{2}}}{\rm{C}}{{\rm{l}}_{\rm{2}}}({\rm{g}}) \to {\rm{C}}{{\rm{l}}^{{\rm{ - }}}}({\rm{aq}})\)
(using the data,
\(\mathrm{\Delta_{\text {diss }} H_{C l_{2}}^{o}=240 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta_{e g} H_{C l}^{o}=-349 \mathrm{~kJ} \mathrm{~mol}^{-1}}\),
\(\mathrm{\left.\Delta_{h y d} H_{C l^{-}}^{o}=-381 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)}\), will be
369500
Given :
(I) \(\mathrm{\mathrm{H}_{2}(g)+\dfrac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)}\);
\(\mathrm{\Delta H_{298 K}^{o}=-285.9 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
(II) \(\mathrm{\mathrm{H}_{2}(g)+\dfrac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(g)}\);
\(\mathrm{\Delta H_{298 \mathrm{~K}}^{o}=-241.8 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
The molar enthalpy of vapourisation of water will be :