Laws of Thermochemistry
CHXI06:THERMODYNAMICS

369498 Oxidising power of chlorine in aqueous solution can be determined by the parameters indicated below:
\(\frac{{\rm{1}}}{{\rm{2}}}{\rm{C}}{{\rm{l}}_{\rm{2}}}({\rm{g}}) \to {\rm{C}}{{\rm{l}}^{{\rm{ - }}}}({\rm{aq}})\)
(using the data,
\(\mathrm{\Delta_{\text {diss }} H_{C l_{2}}^{o}=240 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta_{e g} H_{C l}^{o}=-349 \mathrm{~kJ} \mathrm{~mol}^{-1}}\),
\(\mathrm{\left.\Delta_{h y d} H_{C l^{-}}^{o}=-381 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)}\), will be

1 \(\mathrm{+152 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
2 \(\mathrm{-610 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
3 \(\mathrm{-850 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
4 \(\mathrm{+120 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
CHXI06:THERMODYNAMICS

369499 Calculate the enthalpy of vaporisation of \(\mathrm{I_{2}}\). If the sublimation energy and enthalpy of fusion of \(\mathrm{\mathrm{I}_{2}}\) is \(\mathrm{57.3 \mathrm{~kJ} \mathrm{~mol}^{-1}}\) and \(\mathrm{15.5 \mathrm{~kJ} \mathrm{~mol}^{-1}}\), respectively

1 \(\mathrm{-72.8 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
2 \(\mathrm{72.8 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
3 \(\mathrm{-41.8 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
4 \(\mathrm{+41.8 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
CHXI06:THERMODYNAMICS

369500 Given :
(I) \(\mathrm{\mathrm{H}_{2}(g)+\dfrac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)}\);
\(\mathrm{\Delta H_{298 K}^{o}=-285.9 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
(II) \(\mathrm{\mathrm{H}_{2}(g)+\dfrac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(g)}\);
\(\mathrm{\Delta H_{298 \mathrm{~K}}^{o}=-241.8 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
The molar enthalpy of vapourisation of water will be :

1 \(\mathrm{241.8 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
2 \(\mathrm{22.0 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
3 \(\mathrm{44.1 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
4 \(\mathrm{527.7 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
CHXI06:THERMODYNAMICS

369501 For the thermochemical equation, \(\mathrm{2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(1)}: \Delta \mathrm{H}=-571.6 \mathrm{~kJ}}\)
Heat of decomposition of water is

1 \(\mathrm{-571.6 \mathrm{~kJ}}\)
2 \(\mathrm{+571.6 \mathrm{~kJ}}\)
3 \(\mathrm{-1143.2 \mathrm{~kJ}}\)
4 \(\mathrm{+285.8 \mathrm{~kJ}}\)
CHXI06:THERMODYNAMICS

369498 Oxidising power of chlorine in aqueous solution can be determined by the parameters indicated below:
\(\frac{{\rm{1}}}{{\rm{2}}}{\rm{C}}{{\rm{l}}_{\rm{2}}}({\rm{g}}) \to {\rm{C}}{{\rm{l}}^{{\rm{ - }}}}({\rm{aq}})\)
(using the data,
\(\mathrm{\Delta_{\text {diss }} H_{C l_{2}}^{o}=240 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta_{e g} H_{C l}^{o}=-349 \mathrm{~kJ} \mathrm{~mol}^{-1}}\),
\(\mathrm{\left.\Delta_{h y d} H_{C l^{-}}^{o}=-381 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)}\), will be

1 \(\mathrm{+152 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
2 \(\mathrm{-610 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
3 \(\mathrm{-850 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
4 \(\mathrm{+120 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
CHXI06:THERMODYNAMICS

369499 Calculate the enthalpy of vaporisation of \(\mathrm{I_{2}}\). If the sublimation energy and enthalpy of fusion of \(\mathrm{\mathrm{I}_{2}}\) is \(\mathrm{57.3 \mathrm{~kJ} \mathrm{~mol}^{-1}}\) and \(\mathrm{15.5 \mathrm{~kJ} \mathrm{~mol}^{-1}}\), respectively

1 \(\mathrm{-72.8 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
2 \(\mathrm{72.8 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
3 \(\mathrm{-41.8 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
4 \(\mathrm{+41.8 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
CHXI06:THERMODYNAMICS

369500 Given :
(I) \(\mathrm{\mathrm{H}_{2}(g)+\dfrac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)}\);
\(\mathrm{\Delta H_{298 K}^{o}=-285.9 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
(II) \(\mathrm{\mathrm{H}_{2}(g)+\dfrac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(g)}\);
\(\mathrm{\Delta H_{298 \mathrm{~K}}^{o}=-241.8 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
The molar enthalpy of vapourisation of water will be :

1 \(\mathrm{241.8 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
2 \(\mathrm{22.0 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
3 \(\mathrm{44.1 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
4 \(\mathrm{527.7 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
CHXI06:THERMODYNAMICS

369501 For the thermochemical equation, \(\mathrm{2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(1)}: \Delta \mathrm{H}=-571.6 \mathrm{~kJ}}\)
Heat of decomposition of water is

1 \(\mathrm{-571.6 \mathrm{~kJ}}\)
2 \(\mathrm{+571.6 \mathrm{~kJ}}\)
3 \(\mathrm{-1143.2 \mathrm{~kJ}}\)
4 \(\mathrm{+285.8 \mathrm{~kJ}}\)
CHXI06:THERMODYNAMICS

369498 Oxidising power of chlorine in aqueous solution can be determined by the parameters indicated below:
\(\frac{{\rm{1}}}{{\rm{2}}}{\rm{C}}{{\rm{l}}_{\rm{2}}}({\rm{g}}) \to {\rm{C}}{{\rm{l}}^{{\rm{ - }}}}({\rm{aq}})\)
(using the data,
\(\mathrm{\Delta_{\text {diss }} H_{C l_{2}}^{o}=240 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta_{e g} H_{C l}^{o}=-349 \mathrm{~kJ} \mathrm{~mol}^{-1}}\),
\(\mathrm{\left.\Delta_{h y d} H_{C l^{-}}^{o}=-381 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)}\), will be

1 \(\mathrm{+152 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
2 \(\mathrm{-610 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
3 \(\mathrm{-850 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
4 \(\mathrm{+120 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
CHXI06:THERMODYNAMICS

369499 Calculate the enthalpy of vaporisation of \(\mathrm{I_{2}}\). If the sublimation energy and enthalpy of fusion of \(\mathrm{\mathrm{I}_{2}}\) is \(\mathrm{57.3 \mathrm{~kJ} \mathrm{~mol}^{-1}}\) and \(\mathrm{15.5 \mathrm{~kJ} \mathrm{~mol}^{-1}}\), respectively

1 \(\mathrm{-72.8 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
2 \(\mathrm{72.8 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
3 \(\mathrm{-41.8 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
4 \(\mathrm{+41.8 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
CHXI06:THERMODYNAMICS

369500 Given :
(I) \(\mathrm{\mathrm{H}_{2}(g)+\dfrac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)}\);
\(\mathrm{\Delta H_{298 K}^{o}=-285.9 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
(II) \(\mathrm{\mathrm{H}_{2}(g)+\dfrac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(g)}\);
\(\mathrm{\Delta H_{298 \mathrm{~K}}^{o}=-241.8 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
The molar enthalpy of vapourisation of water will be :

1 \(\mathrm{241.8 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
2 \(\mathrm{22.0 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
3 \(\mathrm{44.1 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
4 \(\mathrm{527.7 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
CHXI06:THERMODYNAMICS

369501 For the thermochemical equation, \(\mathrm{2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(1)}: \Delta \mathrm{H}=-571.6 \mathrm{~kJ}}\)
Heat of decomposition of water is

1 \(\mathrm{-571.6 \mathrm{~kJ}}\)
2 \(\mathrm{+571.6 \mathrm{~kJ}}\)
3 \(\mathrm{-1143.2 \mathrm{~kJ}}\)
4 \(\mathrm{+285.8 \mathrm{~kJ}}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXI06:THERMODYNAMICS

369498 Oxidising power of chlorine in aqueous solution can be determined by the parameters indicated below:
\(\frac{{\rm{1}}}{{\rm{2}}}{\rm{C}}{{\rm{l}}_{\rm{2}}}({\rm{g}}) \to {\rm{C}}{{\rm{l}}^{{\rm{ - }}}}({\rm{aq}})\)
(using the data,
\(\mathrm{\Delta_{\text {diss }} H_{C l_{2}}^{o}=240 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta_{e g} H_{C l}^{o}=-349 \mathrm{~kJ} \mathrm{~mol}^{-1}}\),
\(\mathrm{\left.\Delta_{h y d} H_{C l^{-}}^{o}=-381 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)}\), will be

1 \(\mathrm{+152 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
2 \(\mathrm{-610 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
3 \(\mathrm{-850 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
4 \(\mathrm{+120 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
CHXI06:THERMODYNAMICS

369499 Calculate the enthalpy of vaporisation of \(\mathrm{I_{2}}\). If the sublimation energy and enthalpy of fusion of \(\mathrm{\mathrm{I}_{2}}\) is \(\mathrm{57.3 \mathrm{~kJ} \mathrm{~mol}^{-1}}\) and \(\mathrm{15.5 \mathrm{~kJ} \mathrm{~mol}^{-1}}\), respectively

1 \(\mathrm{-72.8 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
2 \(\mathrm{72.8 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
3 \(\mathrm{-41.8 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
4 \(\mathrm{+41.8 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
CHXI06:THERMODYNAMICS

369500 Given :
(I) \(\mathrm{\mathrm{H}_{2}(g)+\dfrac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)}\);
\(\mathrm{\Delta H_{298 K}^{o}=-285.9 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
(II) \(\mathrm{\mathrm{H}_{2}(g)+\dfrac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(g)}\);
\(\mathrm{\Delta H_{298 \mathrm{~K}}^{o}=-241.8 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
The molar enthalpy of vapourisation of water will be :

1 \(\mathrm{241.8 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
2 \(\mathrm{22.0 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
3 \(\mathrm{44.1 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
4 \(\mathrm{527.7 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
CHXI06:THERMODYNAMICS

369501 For the thermochemical equation, \(\mathrm{2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(1)}: \Delta \mathrm{H}=-571.6 \mathrm{~kJ}}\)
Heat of decomposition of water is

1 \(\mathrm{-571.6 \mathrm{~kJ}}\)
2 \(\mathrm{+571.6 \mathrm{~kJ}}\)
3 \(\mathrm{-1143.2 \mathrm{~kJ}}\)
4 \(\mathrm{+285.8 \mathrm{~kJ}}\)