369489 The combustion of one mole of benzene takes place at \(\mathrm{298 \mathrm{~K}}\) and \(\mathrm{1 \mathrm{~atm}}\). After combustion, \(\mathrm{\mathrm{CO}_{2(\mathrm{~g})}}\) and \(\mathrm{\mathrm{H}_{2} \mathrm{O}(l)}\) are produced and \(\mathrm{3267.0 \mathrm{~kJ}}\) of heat is liberated. The standard enthalpy of formation, \(\mathrm{\Delta_{f} \mathrm{H}^{\circ}}\) of benzene is, Standard enthalpies of formation of \(\mathrm{\mathrm{CO}_{2(\mathrm{~g})}}\) and \(\mathrm{\mathrm{H}_{2} \mathrm{O}(\mathrm{l})}\) are \(\mathrm{-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1}}\) and \(\mathrm{-285.83 \mathrm{~kJ} \mathrm{~mol}^{-1}}\), respectively.
369490 If \(\mathrm{\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta \mathrm{H}=-\mathrm{X}}\), \(\mathrm{\mathrm{CO}(\mathrm{g})+\dfrac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta \mathrm{H}=-\mathrm{Y}}\) Calculate \(\mathrm{\Delta_{\mathrm{f}} \mathrm{H}}\) for \(\mathrm{\mathrm{CO}(\mathrm{g})}\) formation
369491
On the basis of thermochemical equations (i), (ii) and (iii), find out which of the algebraic relationships given in options (1) to (4) is correct.
(i) \(\mathrm{\mathrm{C}(}\) graphite \(\mathrm{)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta_{r} H=x \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
(ii) \(\mathrm{C(}\) graphite \(\mathrm{)+\dfrac{1}{2} \mathrm{O}_{2}(g) \rightarrow C O(g) ; \Delta_{r} H=y \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
(iii) \(\mathrm{\mathrm{CO}+\dfrac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g) ; \Delta_{r} \mathrm{H}=z \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
369492
Calculate \(\mathrm{\Delta_{\text {lattice }} H^{\circ}}\) for \(\mathrm{\mathrm{NaBr}}\) using the following data, \(\mathrm{\Delta_{\text {sub }} \mathrm{H}^{\circ}}\) for sodium metal \(\mathrm{=108.4 \mathrm{~kJ} \mathrm{~mol}^{-1}}\),
Ionisation enthalpy of sodium \(\mathrm{=496 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
Electron gain enthalpy of \(\mathrm{\mathrm{Br}=-325 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
Bond dissociation enthalpy of \(\mathrm{\mathrm{Br}=192 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
\(\mathrm{\Delta_{f} \mathrm{H}^{\circ}}\) for \(\mathrm{\mathrm{NaBr}_{(\mathrm{s})}=-360.1 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
369489 The combustion of one mole of benzene takes place at \(\mathrm{298 \mathrm{~K}}\) and \(\mathrm{1 \mathrm{~atm}}\). After combustion, \(\mathrm{\mathrm{CO}_{2(\mathrm{~g})}}\) and \(\mathrm{\mathrm{H}_{2} \mathrm{O}(l)}\) are produced and \(\mathrm{3267.0 \mathrm{~kJ}}\) of heat is liberated. The standard enthalpy of formation, \(\mathrm{\Delta_{f} \mathrm{H}^{\circ}}\) of benzene is, Standard enthalpies of formation of \(\mathrm{\mathrm{CO}_{2(\mathrm{~g})}}\) and \(\mathrm{\mathrm{H}_{2} \mathrm{O}(\mathrm{l})}\) are \(\mathrm{-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1}}\) and \(\mathrm{-285.83 \mathrm{~kJ} \mathrm{~mol}^{-1}}\), respectively.
369490 If \(\mathrm{\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta \mathrm{H}=-\mathrm{X}}\), \(\mathrm{\mathrm{CO}(\mathrm{g})+\dfrac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta \mathrm{H}=-\mathrm{Y}}\) Calculate \(\mathrm{\Delta_{\mathrm{f}} \mathrm{H}}\) for \(\mathrm{\mathrm{CO}(\mathrm{g})}\) formation
369491
On the basis of thermochemical equations (i), (ii) and (iii), find out which of the algebraic relationships given in options (1) to (4) is correct.
(i) \(\mathrm{\mathrm{C}(}\) graphite \(\mathrm{)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta_{r} H=x \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
(ii) \(\mathrm{C(}\) graphite \(\mathrm{)+\dfrac{1}{2} \mathrm{O}_{2}(g) \rightarrow C O(g) ; \Delta_{r} H=y \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
(iii) \(\mathrm{\mathrm{CO}+\dfrac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g) ; \Delta_{r} \mathrm{H}=z \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
369492
Calculate \(\mathrm{\Delta_{\text {lattice }} H^{\circ}}\) for \(\mathrm{\mathrm{NaBr}}\) using the following data, \(\mathrm{\Delta_{\text {sub }} \mathrm{H}^{\circ}}\) for sodium metal \(\mathrm{=108.4 \mathrm{~kJ} \mathrm{~mol}^{-1}}\),
Ionisation enthalpy of sodium \(\mathrm{=496 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
Electron gain enthalpy of \(\mathrm{\mathrm{Br}=-325 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
Bond dissociation enthalpy of \(\mathrm{\mathrm{Br}=192 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
\(\mathrm{\Delta_{f} \mathrm{H}^{\circ}}\) for \(\mathrm{\mathrm{NaBr}_{(\mathrm{s})}=-360.1 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
369489 The combustion of one mole of benzene takes place at \(\mathrm{298 \mathrm{~K}}\) and \(\mathrm{1 \mathrm{~atm}}\). After combustion, \(\mathrm{\mathrm{CO}_{2(\mathrm{~g})}}\) and \(\mathrm{\mathrm{H}_{2} \mathrm{O}(l)}\) are produced and \(\mathrm{3267.0 \mathrm{~kJ}}\) of heat is liberated. The standard enthalpy of formation, \(\mathrm{\Delta_{f} \mathrm{H}^{\circ}}\) of benzene is, Standard enthalpies of formation of \(\mathrm{\mathrm{CO}_{2(\mathrm{~g})}}\) and \(\mathrm{\mathrm{H}_{2} \mathrm{O}(\mathrm{l})}\) are \(\mathrm{-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1}}\) and \(\mathrm{-285.83 \mathrm{~kJ} \mathrm{~mol}^{-1}}\), respectively.
369490 If \(\mathrm{\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta \mathrm{H}=-\mathrm{X}}\), \(\mathrm{\mathrm{CO}(\mathrm{g})+\dfrac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta \mathrm{H}=-\mathrm{Y}}\) Calculate \(\mathrm{\Delta_{\mathrm{f}} \mathrm{H}}\) for \(\mathrm{\mathrm{CO}(\mathrm{g})}\) formation
369491
On the basis of thermochemical equations (i), (ii) and (iii), find out which of the algebraic relationships given in options (1) to (4) is correct.
(i) \(\mathrm{\mathrm{C}(}\) graphite \(\mathrm{)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta_{r} H=x \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
(ii) \(\mathrm{C(}\) graphite \(\mathrm{)+\dfrac{1}{2} \mathrm{O}_{2}(g) \rightarrow C O(g) ; \Delta_{r} H=y \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
(iii) \(\mathrm{\mathrm{CO}+\dfrac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g) ; \Delta_{r} \mathrm{H}=z \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
369492
Calculate \(\mathrm{\Delta_{\text {lattice }} H^{\circ}}\) for \(\mathrm{\mathrm{NaBr}}\) using the following data, \(\mathrm{\Delta_{\text {sub }} \mathrm{H}^{\circ}}\) for sodium metal \(\mathrm{=108.4 \mathrm{~kJ} \mathrm{~mol}^{-1}}\),
Ionisation enthalpy of sodium \(\mathrm{=496 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
Electron gain enthalpy of \(\mathrm{\mathrm{Br}=-325 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
Bond dissociation enthalpy of \(\mathrm{\mathrm{Br}=192 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
\(\mathrm{\Delta_{f} \mathrm{H}^{\circ}}\) for \(\mathrm{\mathrm{NaBr}_{(\mathrm{s})}=-360.1 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
369489 The combustion of one mole of benzene takes place at \(\mathrm{298 \mathrm{~K}}\) and \(\mathrm{1 \mathrm{~atm}}\). After combustion, \(\mathrm{\mathrm{CO}_{2(\mathrm{~g})}}\) and \(\mathrm{\mathrm{H}_{2} \mathrm{O}(l)}\) are produced and \(\mathrm{3267.0 \mathrm{~kJ}}\) of heat is liberated. The standard enthalpy of formation, \(\mathrm{\Delta_{f} \mathrm{H}^{\circ}}\) of benzene is, Standard enthalpies of formation of \(\mathrm{\mathrm{CO}_{2(\mathrm{~g})}}\) and \(\mathrm{\mathrm{H}_{2} \mathrm{O}(\mathrm{l})}\) are \(\mathrm{-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1}}\) and \(\mathrm{-285.83 \mathrm{~kJ} \mathrm{~mol}^{-1}}\), respectively.
369490 If \(\mathrm{\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta \mathrm{H}=-\mathrm{X}}\), \(\mathrm{\mathrm{CO}(\mathrm{g})+\dfrac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta \mathrm{H}=-\mathrm{Y}}\) Calculate \(\mathrm{\Delta_{\mathrm{f}} \mathrm{H}}\) for \(\mathrm{\mathrm{CO}(\mathrm{g})}\) formation
369491
On the basis of thermochemical equations (i), (ii) and (iii), find out which of the algebraic relationships given in options (1) to (4) is correct.
(i) \(\mathrm{\mathrm{C}(}\) graphite \(\mathrm{)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta_{r} H=x \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
(ii) \(\mathrm{C(}\) graphite \(\mathrm{)+\dfrac{1}{2} \mathrm{O}_{2}(g) \rightarrow C O(g) ; \Delta_{r} H=y \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
(iii) \(\mathrm{\mathrm{CO}+\dfrac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g) ; \Delta_{r} \mathrm{H}=z \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
369492
Calculate \(\mathrm{\Delta_{\text {lattice }} H^{\circ}}\) for \(\mathrm{\mathrm{NaBr}}\) using the following data, \(\mathrm{\Delta_{\text {sub }} \mathrm{H}^{\circ}}\) for sodium metal \(\mathrm{=108.4 \mathrm{~kJ} \mathrm{~mol}^{-1}}\),
Ionisation enthalpy of sodium \(\mathrm{=496 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
Electron gain enthalpy of \(\mathrm{\mathrm{Br}=-325 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
Bond dissociation enthalpy of \(\mathrm{\mathrm{Br}=192 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
\(\mathrm{\Delta_{f} \mathrm{H}^{\circ}}\) for \(\mathrm{\mathrm{NaBr}_{(\mathrm{s})}=-360.1 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)