369352
What is the work done when a gas is compressed from \(2.5 \times 10^{-2} \mathrm{~m}^{3}\) to \(1.3 \times 10^{-2} \mathrm{~m}^{3}\) at constant external pressure of 4.05 bar?
369353
A gas expands from a volume of \(\mathrm{1 \mathrm{~m}^{3}}\) to a volume of \(\mathrm{2 \mathrm{~m}^{3}}\) against an external pressure of \(\mathrm{10^{5} \mathrm{~N} \mathrm{~m}^{-2}}\). The work done by the gas will be
1 \(\mathrm{10^{5} \mathrm{~kJ}}\)
2 \(\mathrm{10^{2} \mathrm{~kJ}}\)
3 \(\mathrm{10^{2} \mathrm{~J}}\)
4 \(\mathrm{10^{3} \mathrm{~J}}\)
Explanation:
Work done \(\mathrm{(\mathrm{w})=\mathrm{P} \Delta \mathrm{V}=\mathrm{P} \times\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)}\) \(\rm{=10^{5} \times(2-1)=10^{5} \mathrm{~J} \text { or } 10^{2} \mathrm{~kJ}}\)
KCET - 2012
CHXI06:THERMODYNAMICS
369354
What is the constant external pressure of an ideal gas when expanded from \(2 \times 10^{-2} \mathrm{~m}^{3}\) to \(3 \times 10^{-2} \mathrm{~m}^{3}\), if the work done by the gas is \(-5.09 \mathrm{~kJ}\) ?
369355
A gas is allowed to expand in an insulated container against a constant external pressure of 2.5 bar from \(4.5 \mathrm{dm}^{3}\) to \(7 \times 10^{-3} \mathrm{~m}^{3}\). What is the change in internal energy of the gas?
1 \(-3.25 \mathrm{~J}\)
2 \(-312.5 \mathrm{~J}\)
3 \(112.3 \mathrm{~J}\)
4 \(-625 \mathrm{~J}\)
Explanation:
\(\Delta {\text{U = q + w}}\) Since the container is insulated, \({\text{q = 0}}\) \(\Delta \mathrm{U}=\mathrm{W}=-\mathrm{P} \Delta \mathrm{V}=-\mathrm{P}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)\) Given: \(\mathrm{P}=2.5\) bar, \(\mathrm{V}_{2}=7 \times 10^{-3} \mathrm{~m}^{3}\) \(\begin{gathered}=7 \times 10^{-3} \times 10^{3} \mathrm{~L}=7 \mathrm{~L} \\\mathrm{~V}_{1}=4.5 \mathrm{dm}^{3}=4.5 \mathrm{~L} \\\therefore \quad \Delta \mathrm{U}=-2.5(7-4.5) \mathrm{L} \text { bar }=-6.25 \mathrm{Lbar} \\=-6.25 \times 100 \mathrm{~J}=-625 \mathrm{~J}[1 \mathrm{~L} \text { bar }=100 \mathrm{~J}]\end{gathered}\)
369352
What is the work done when a gas is compressed from \(2.5 \times 10^{-2} \mathrm{~m}^{3}\) to \(1.3 \times 10^{-2} \mathrm{~m}^{3}\) at constant external pressure of 4.05 bar?
369353
A gas expands from a volume of \(\mathrm{1 \mathrm{~m}^{3}}\) to a volume of \(\mathrm{2 \mathrm{~m}^{3}}\) against an external pressure of \(\mathrm{10^{5} \mathrm{~N} \mathrm{~m}^{-2}}\). The work done by the gas will be
1 \(\mathrm{10^{5} \mathrm{~kJ}}\)
2 \(\mathrm{10^{2} \mathrm{~kJ}}\)
3 \(\mathrm{10^{2} \mathrm{~J}}\)
4 \(\mathrm{10^{3} \mathrm{~J}}\)
Explanation:
Work done \(\mathrm{(\mathrm{w})=\mathrm{P} \Delta \mathrm{V}=\mathrm{P} \times\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)}\) \(\rm{=10^{5} \times(2-1)=10^{5} \mathrm{~J} \text { or } 10^{2} \mathrm{~kJ}}\)
KCET - 2012
CHXI06:THERMODYNAMICS
369354
What is the constant external pressure of an ideal gas when expanded from \(2 \times 10^{-2} \mathrm{~m}^{3}\) to \(3 \times 10^{-2} \mathrm{~m}^{3}\), if the work done by the gas is \(-5.09 \mathrm{~kJ}\) ?
369355
A gas is allowed to expand in an insulated container against a constant external pressure of 2.5 bar from \(4.5 \mathrm{dm}^{3}\) to \(7 \times 10^{-3} \mathrm{~m}^{3}\). What is the change in internal energy of the gas?
1 \(-3.25 \mathrm{~J}\)
2 \(-312.5 \mathrm{~J}\)
3 \(112.3 \mathrm{~J}\)
4 \(-625 \mathrm{~J}\)
Explanation:
\(\Delta {\text{U = q + w}}\) Since the container is insulated, \({\text{q = 0}}\) \(\Delta \mathrm{U}=\mathrm{W}=-\mathrm{P} \Delta \mathrm{V}=-\mathrm{P}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)\) Given: \(\mathrm{P}=2.5\) bar, \(\mathrm{V}_{2}=7 \times 10^{-3} \mathrm{~m}^{3}\) \(\begin{gathered}=7 \times 10^{-3} \times 10^{3} \mathrm{~L}=7 \mathrm{~L} \\\mathrm{~V}_{1}=4.5 \mathrm{dm}^{3}=4.5 \mathrm{~L} \\\therefore \quad \Delta \mathrm{U}=-2.5(7-4.5) \mathrm{L} \text { bar }=-6.25 \mathrm{Lbar} \\=-6.25 \times 100 \mathrm{~J}=-625 \mathrm{~J}[1 \mathrm{~L} \text { bar }=100 \mathrm{~J}]\end{gathered}\)
369352
What is the work done when a gas is compressed from \(2.5 \times 10^{-2} \mathrm{~m}^{3}\) to \(1.3 \times 10^{-2} \mathrm{~m}^{3}\) at constant external pressure of 4.05 bar?
369353
A gas expands from a volume of \(\mathrm{1 \mathrm{~m}^{3}}\) to a volume of \(\mathrm{2 \mathrm{~m}^{3}}\) against an external pressure of \(\mathrm{10^{5} \mathrm{~N} \mathrm{~m}^{-2}}\). The work done by the gas will be
1 \(\mathrm{10^{5} \mathrm{~kJ}}\)
2 \(\mathrm{10^{2} \mathrm{~kJ}}\)
3 \(\mathrm{10^{2} \mathrm{~J}}\)
4 \(\mathrm{10^{3} \mathrm{~J}}\)
Explanation:
Work done \(\mathrm{(\mathrm{w})=\mathrm{P} \Delta \mathrm{V}=\mathrm{P} \times\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)}\) \(\rm{=10^{5} \times(2-1)=10^{5} \mathrm{~J} \text { or } 10^{2} \mathrm{~kJ}}\)
KCET - 2012
CHXI06:THERMODYNAMICS
369354
What is the constant external pressure of an ideal gas when expanded from \(2 \times 10^{-2} \mathrm{~m}^{3}\) to \(3 \times 10^{-2} \mathrm{~m}^{3}\), if the work done by the gas is \(-5.09 \mathrm{~kJ}\) ?
369355
A gas is allowed to expand in an insulated container against a constant external pressure of 2.5 bar from \(4.5 \mathrm{dm}^{3}\) to \(7 \times 10^{-3} \mathrm{~m}^{3}\). What is the change in internal energy of the gas?
1 \(-3.25 \mathrm{~J}\)
2 \(-312.5 \mathrm{~J}\)
3 \(112.3 \mathrm{~J}\)
4 \(-625 \mathrm{~J}\)
Explanation:
\(\Delta {\text{U = q + w}}\) Since the container is insulated, \({\text{q = 0}}\) \(\Delta \mathrm{U}=\mathrm{W}=-\mathrm{P} \Delta \mathrm{V}=-\mathrm{P}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)\) Given: \(\mathrm{P}=2.5\) bar, \(\mathrm{V}_{2}=7 \times 10^{-3} \mathrm{~m}^{3}\) \(\begin{gathered}=7 \times 10^{-3} \times 10^{3} \mathrm{~L}=7 \mathrm{~L} \\\mathrm{~V}_{1}=4.5 \mathrm{dm}^{3}=4.5 \mathrm{~L} \\\therefore \quad \Delta \mathrm{U}=-2.5(7-4.5) \mathrm{L} \text { bar }=-6.25 \mathrm{Lbar} \\=-6.25 \times 100 \mathrm{~J}=-625 \mathrm{~J}[1 \mathrm{~L} \text { bar }=100 \mathrm{~J}]\end{gathered}\)
369352
What is the work done when a gas is compressed from \(2.5 \times 10^{-2} \mathrm{~m}^{3}\) to \(1.3 \times 10^{-2} \mathrm{~m}^{3}\) at constant external pressure of 4.05 bar?
369353
A gas expands from a volume of \(\mathrm{1 \mathrm{~m}^{3}}\) to a volume of \(\mathrm{2 \mathrm{~m}^{3}}\) against an external pressure of \(\mathrm{10^{5} \mathrm{~N} \mathrm{~m}^{-2}}\). The work done by the gas will be
1 \(\mathrm{10^{5} \mathrm{~kJ}}\)
2 \(\mathrm{10^{2} \mathrm{~kJ}}\)
3 \(\mathrm{10^{2} \mathrm{~J}}\)
4 \(\mathrm{10^{3} \mathrm{~J}}\)
Explanation:
Work done \(\mathrm{(\mathrm{w})=\mathrm{P} \Delta \mathrm{V}=\mathrm{P} \times\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)}\) \(\rm{=10^{5} \times(2-1)=10^{5} \mathrm{~J} \text { or } 10^{2} \mathrm{~kJ}}\)
KCET - 2012
CHXI06:THERMODYNAMICS
369354
What is the constant external pressure of an ideal gas when expanded from \(2 \times 10^{-2} \mathrm{~m}^{3}\) to \(3 \times 10^{-2} \mathrm{~m}^{3}\), if the work done by the gas is \(-5.09 \mathrm{~kJ}\) ?
369355
A gas is allowed to expand in an insulated container against a constant external pressure of 2.5 bar from \(4.5 \mathrm{dm}^{3}\) to \(7 \times 10^{-3} \mathrm{~m}^{3}\). What is the change in internal energy of the gas?
1 \(-3.25 \mathrm{~J}\)
2 \(-312.5 \mathrm{~J}\)
3 \(112.3 \mathrm{~J}\)
4 \(-625 \mathrm{~J}\)
Explanation:
\(\Delta {\text{U = q + w}}\) Since the container is insulated, \({\text{q = 0}}\) \(\Delta \mathrm{U}=\mathrm{W}=-\mathrm{P} \Delta \mathrm{V}=-\mathrm{P}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)\) Given: \(\mathrm{P}=2.5\) bar, \(\mathrm{V}_{2}=7 \times 10^{-3} \mathrm{~m}^{3}\) \(\begin{gathered}=7 \times 10^{-3} \times 10^{3} \mathrm{~L}=7 \mathrm{~L} \\\mathrm{~V}_{1}=4.5 \mathrm{dm}^{3}=4.5 \mathrm{~L} \\\therefore \quad \Delta \mathrm{U}=-2.5(7-4.5) \mathrm{L} \text { bar }=-6.25 \mathrm{Lbar} \\=-6.25 \times 100 \mathrm{~J}=-625 \mathrm{~J}[1 \mathrm{~L} \text { bar }=100 \mathrm{~J}]\end{gathered}\)