Absolute Entropy and Third Law of Thermodynamics
CHXI06:THERMODYNAMICS

369300 Entropy of the universe is

1 constant
2 zero
3 continuously decreasing
4 continuously increasing.
CHXI06:THERMODYNAMICS

369301 When the same quantity of heat is absorbed by a system at two different temperatures \(\mathrm{T_{1}}\) and \(\mathrm{T_{2}}\), such that \(\mathrm{T_{1}>T_{2}}\), change in entropies are \(\mathrm{\Delta \mathrm{S}_{1}}\) and \(\mathrm{\Delta \mathrm{S}_{2}}\) respectively. Then

1 \(\mathrm{\Delta \mathrm{S}_{1}=\Delta \mathrm{S}_{2}}\)
2 \(\mathrm{\Delta \mathrm{S}_{2} < \Delta \mathrm{S}_{1}}\)
3 \(\mathrm{\mathrm{S}_{2}>\mathrm{S}_{1}}\)
4 \(\mathrm{\Delta \mathrm{S}_{1} < \Delta \mathrm{S}_{2}}\)
CHXI06:THERMODYNAMICS

369302 \(\mathrm{\Delta \mathrm{S}=\dfrac{\Delta \mathrm{H}}{\mathrm{T}}}\) holds good for

1 Adiabatic process
2 Isothermal reversible phase change
3 A process at constant pressure
4 A process under any conditions
CHXI06:THERMODYNAMICS

369303 Entropy changes for the process, \(\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{s})\) at normal pressure and \(274 \mathrm{~K}\) are given below \(\Delta \mathrm{S}_{\text {system }}=-22.13, \Delta \mathrm{S}_{\text {surr }}=+22.05\), the process is non-spontaneous because

1 \(\Delta \mathrm{S}_{\text {system }}\) is-ve
2 \(\Delta \mathrm{S}_{\text {surr }}\) is + ve
3 \(\Delta S_{u}\) is -ve
4 \(\Delta \mathrm{S}_{\text {system }} \neq \Delta \mathrm{S}_{\text {surr }}\)
('surr' stands for surroundings and 'u ' stands for universe)
CHXI06:THERMODYNAMICS

369300 Entropy of the universe is

1 constant
2 zero
3 continuously decreasing
4 continuously increasing.
CHXI06:THERMODYNAMICS

369301 When the same quantity of heat is absorbed by a system at two different temperatures \(\mathrm{T_{1}}\) and \(\mathrm{T_{2}}\), such that \(\mathrm{T_{1}>T_{2}}\), change in entropies are \(\mathrm{\Delta \mathrm{S}_{1}}\) and \(\mathrm{\Delta \mathrm{S}_{2}}\) respectively. Then

1 \(\mathrm{\Delta \mathrm{S}_{1}=\Delta \mathrm{S}_{2}}\)
2 \(\mathrm{\Delta \mathrm{S}_{2} < \Delta \mathrm{S}_{1}}\)
3 \(\mathrm{\mathrm{S}_{2}>\mathrm{S}_{1}}\)
4 \(\mathrm{\Delta \mathrm{S}_{1} < \Delta \mathrm{S}_{2}}\)
CHXI06:THERMODYNAMICS

369302 \(\mathrm{\Delta \mathrm{S}=\dfrac{\Delta \mathrm{H}}{\mathrm{T}}}\) holds good for

1 Adiabatic process
2 Isothermal reversible phase change
3 A process at constant pressure
4 A process under any conditions
CHXI06:THERMODYNAMICS

369303 Entropy changes for the process, \(\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{s})\) at normal pressure and \(274 \mathrm{~K}\) are given below \(\Delta \mathrm{S}_{\text {system }}=-22.13, \Delta \mathrm{S}_{\text {surr }}=+22.05\), the process is non-spontaneous because

1 \(\Delta \mathrm{S}_{\text {system }}\) is-ve
2 \(\Delta \mathrm{S}_{\text {surr }}\) is + ve
3 \(\Delta S_{u}\) is -ve
4 \(\Delta \mathrm{S}_{\text {system }} \neq \Delta \mathrm{S}_{\text {surr }}\)
('surr' stands for surroundings and 'u ' stands for universe)
CHXI06:THERMODYNAMICS

369300 Entropy of the universe is

1 constant
2 zero
3 continuously decreasing
4 continuously increasing.
CHXI06:THERMODYNAMICS

369301 When the same quantity of heat is absorbed by a system at two different temperatures \(\mathrm{T_{1}}\) and \(\mathrm{T_{2}}\), such that \(\mathrm{T_{1}>T_{2}}\), change in entropies are \(\mathrm{\Delta \mathrm{S}_{1}}\) and \(\mathrm{\Delta \mathrm{S}_{2}}\) respectively. Then

1 \(\mathrm{\Delta \mathrm{S}_{1}=\Delta \mathrm{S}_{2}}\)
2 \(\mathrm{\Delta \mathrm{S}_{2} < \Delta \mathrm{S}_{1}}\)
3 \(\mathrm{\mathrm{S}_{2}>\mathrm{S}_{1}}\)
4 \(\mathrm{\Delta \mathrm{S}_{1} < \Delta \mathrm{S}_{2}}\)
CHXI06:THERMODYNAMICS

369302 \(\mathrm{\Delta \mathrm{S}=\dfrac{\Delta \mathrm{H}}{\mathrm{T}}}\) holds good for

1 Adiabatic process
2 Isothermal reversible phase change
3 A process at constant pressure
4 A process under any conditions
CHXI06:THERMODYNAMICS

369303 Entropy changes for the process, \(\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{s})\) at normal pressure and \(274 \mathrm{~K}\) are given below \(\Delta \mathrm{S}_{\text {system }}=-22.13, \Delta \mathrm{S}_{\text {surr }}=+22.05\), the process is non-spontaneous because

1 \(\Delta \mathrm{S}_{\text {system }}\) is-ve
2 \(\Delta \mathrm{S}_{\text {surr }}\) is + ve
3 \(\Delta S_{u}\) is -ve
4 \(\Delta \mathrm{S}_{\text {system }} \neq \Delta \mathrm{S}_{\text {surr }}\)
('surr' stands for surroundings and 'u ' stands for universe)
CHXI06:THERMODYNAMICS

369300 Entropy of the universe is

1 constant
2 zero
3 continuously decreasing
4 continuously increasing.
CHXI06:THERMODYNAMICS

369301 When the same quantity of heat is absorbed by a system at two different temperatures \(\mathrm{T_{1}}\) and \(\mathrm{T_{2}}\), such that \(\mathrm{T_{1}>T_{2}}\), change in entropies are \(\mathrm{\Delta \mathrm{S}_{1}}\) and \(\mathrm{\Delta \mathrm{S}_{2}}\) respectively. Then

1 \(\mathrm{\Delta \mathrm{S}_{1}=\Delta \mathrm{S}_{2}}\)
2 \(\mathrm{\Delta \mathrm{S}_{2} < \Delta \mathrm{S}_{1}}\)
3 \(\mathrm{\mathrm{S}_{2}>\mathrm{S}_{1}}\)
4 \(\mathrm{\Delta \mathrm{S}_{1} < \Delta \mathrm{S}_{2}}\)
CHXI06:THERMODYNAMICS

369302 \(\mathrm{\Delta \mathrm{S}=\dfrac{\Delta \mathrm{H}}{\mathrm{T}}}\) holds good for

1 Adiabatic process
2 Isothermal reversible phase change
3 A process at constant pressure
4 A process under any conditions
CHXI06:THERMODYNAMICS

369303 Entropy changes for the process, \(\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{s})\) at normal pressure and \(274 \mathrm{~K}\) are given below \(\Delta \mathrm{S}_{\text {system }}=-22.13, \Delta \mathrm{S}_{\text {surr }}=+22.05\), the process is non-spontaneous because

1 \(\Delta \mathrm{S}_{\text {system }}\) is-ve
2 \(\Delta \mathrm{S}_{\text {surr }}\) is + ve
3 \(\Delta S_{u}\) is -ve
4 \(\Delta \mathrm{S}_{\text {system }} \neq \Delta \mathrm{S}_{\text {surr }}\)
('surr' stands for surroundings and 'u ' stands for universe)