ABMO \({{\rm{p}}_{\rm{x}}}\) have two nodal planes
CHXI04:CHEMICAL BONDING AND MOLECULAR STRUCTURE
313498
The paramagnetic nature of oxygen is best explained by
1 V.B.theory
2 Hybridisation
3 M.O.theory
4 VSEPR theory
Explanation:
CHXI04:CHEMICAL BONDING AND MOLECULAR STRUCTURE
313691
According to molecular orbital theory, there are ____ \({\mathrm{\pi}}\) bonds in \({\mathrm{\mathrm{C}_{2}}}\) molecule.
1 1
2 2
3 3
4 0
Explanation:
\({{\rm{C}}_{\rm{2}}}:\sigma 1{{\rm{s}}^{\rm{2}}}\;{\sigma ^{\rm{*}}}{\rm{1}}{{\rm{s}}^{\rm{2}}}\;\sigma {\rm{2}}{{\rm{s}}^{\rm{2}}}\;{\sigma ^{\rm{*}}}{\rm{2}}{{\rm{s}}^{\rm{2}}}\;\pi 2{\rm{p}}_x^2 = \pi 2{\rm{p}}_y^2\) Therefore, according to molecular orbital theory. the orbitals insolved in bonding are only \({\mathrm{\pi}}\) orbitals \(\pi 2{\rm{p}}_x^2 = \pi 2{{\rm{p}}_y}\). Since the last 4 electrons are in the pi molecular orbitals, there are two pi bonds.
CHXI04:CHEMICAL BONDING AND MOLECULAR STRUCTURE
313684
The correct order of bond dissociation energy among \({{\rm{N}}_{\rm{2}}}{\rm{,}}\,{{\rm{O}}_{\rm{2}}}{\rm{,}}\,{\rm{O}}_{\rm{2}}^{\rm{ - }}\) is shown which of the following arrangements?
The bond order of \({{\rm{N}}_{\rm{2}}}{\rm{,}}\,\,{{\rm{O}}_{\rm{2}}}\,\,{\rm{and}}\,\,{\rm{O}}_{\rm{2}}^{\rm{ - }}\) are respectively 3, 2 and 1.5 Since higher bond order implies higher bond dissociation energy hence the correct order will be \({{\rm{N}}_{\rm{2}}}{\rm{ > }}{{\rm{O}}_{\rm{2}}}{\rm{ > O}}_{\rm{2}}^{\rm{ - }}\)
ABMO \({{\rm{p}}_{\rm{x}}}\) have two nodal planes
CHXI04:CHEMICAL BONDING AND MOLECULAR STRUCTURE
313498
The paramagnetic nature of oxygen is best explained by
1 V.B.theory
2 Hybridisation
3 M.O.theory
4 VSEPR theory
Explanation:
CHXI04:CHEMICAL BONDING AND MOLECULAR STRUCTURE
313691
According to molecular orbital theory, there are ____ \({\mathrm{\pi}}\) bonds in \({\mathrm{\mathrm{C}_{2}}}\) molecule.
1 1
2 2
3 3
4 0
Explanation:
\({{\rm{C}}_{\rm{2}}}:\sigma 1{{\rm{s}}^{\rm{2}}}\;{\sigma ^{\rm{*}}}{\rm{1}}{{\rm{s}}^{\rm{2}}}\;\sigma {\rm{2}}{{\rm{s}}^{\rm{2}}}\;{\sigma ^{\rm{*}}}{\rm{2}}{{\rm{s}}^{\rm{2}}}\;\pi 2{\rm{p}}_x^2 = \pi 2{\rm{p}}_y^2\) Therefore, according to molecular orbital theory. the orbitals insolved in bonding are only \({\mathrm{\pi}}\) orbitals \(\pi 2{\rm{p}}_x^2 = \pi 2{{\rm{p}}_y}\). Since the last 4 electrons are in the pi molecular orbitals, there are two pi bonds.
CHXI04:CHEMICAL BONDING AND MOLECULAR STRUCTURE
313684
The correct order of bond dissociation energy among \({{\rm{N}}_{\rm{2}}}{\rm{,}}\,{{\rm{O}}_{\rm{2}}}{\rm{,}}\,{\rm{O}}_{\rm{2}}^{\rm{ - }}\) is shown which of the following arrangements?
The bond order of \({{\rm{N}}_{\rm{2}}}{\rm{,}}\,\,{{\rm{O}}_{\rm{2}}}\,\,{\rm{and}}\,\,{\rm{O}}_{\rm{2}}^{\rm{ - }}\) are respectively 3, 2 and 1.5 Since higher bond order implies higher bond dissociation energy hence the correct order will be \({{\rm{N}}_{\rm{2}}}{\rm{ > }}{{\rm{O}}_{\rm{2}}}{\rm{ > O}}_{\rm{2}}^{\rm{ - }}\)
ABMO \({{\rm{p}}_{\rm{x}}}\) have two nodal planes
CHXI04:CHEMICAL BONDING AND MOLECULAR STRUCTURE
313498
The paramagnetic nature of oxygen is best explained by
1 V.B.theory
2 Hybridisation
3 M.O.theory
4 VSEPR theory
Explanation:
CHXI04:CHEMICAL BONDING AND MOLECULAR STRUCTURE
313691
According to molecular orbital theory, there are ____ \({\mathrm{\pi}}\) bonds in \({\mathrm{\mathrm{C}_{2}}}\) molecule.
1 1
2 2
3 3
4 0
Explanation:
\({{\rm{C}}_{\rm{2}}}:\sigma 1{{\rm{s}}^{\rm{2}}}\;{\sigma ^{\rm{*}}}{\rm{1}}{{\rm{s}}^{\rm{2}}}\;\sigma {\rm{2}}{{\rm{s}}^{\rm{2}}}\;{\sigma ^{\rm{*}}}{\rm{2}}{{\rm{s}}^{\rm{2}}}\;\pi 2{\rm{p}}_x^2 = \pi 2{\rm{p}}_y^2\) Therefore, according to molecular orbital theory. the orbitals insolved in bonding are only \({\mathrm{\pi}}\) orbitals \(\pi 2{\rm{p}}_x^2 = \pi 2{{\rm{p}}_y}\). Since the last 4 electrons are in the pi molecular orbitals, there are two pi bonds.
CHXI04:CHEMICAL BONDING AND MOLECULAR STRUCTURE
313684
The correct order of bond dissociation energy among \({{\rm{N}}_{\rm{2}}}{\rm{,}}\,{{\rm{O}}_{\rm{2}}}{\rm{,}}\,{\rm{O}}_{\rm{2}}^{\rm{ - }}\) is shown which of the following arrangements?
The bond order of \({{\rm{N}}_{\rm{2}}}{\rm{,}}\,\,{{\rm{O}}_{\rm{2}}}\,\,{\rm{and}}\,\,{\rm{O}}_{\rm{2}}^{\rm{ - }}\) are respectively 3, 2 and 1.5 Since higher bond order implies higher bond dissociation energy hence the correct order will be \({{\rm{N}}_{\rm{2}}}{\rm{ > }}{{\rm{O}}_{\rm{2}}}{\rm{ > O}}_{\rm{2}}^{\rm{ - }}\)
ABMO \({{\rm{p}}_{\rm{x}}}\) have two nodal planes
CHXI04:CHEMICAL BONDING AND MOLECULAR STRUCTURE
313498
The paramagnetic nature of oxygen is best explained by
1 V.B.theory
2 Hybridisation
3 M.O.theory
4 VSEPR theory
Explanation:
CHXI04:CHEMICAL BONDING AND MOLECULAR STRUCTURE
313691
According to molecular orbital theory, there are ____ \({\mathrm{\pi}}\) bonds in \({\mathrm{\mathrm{C}_{2}}}\) molecule.
1 1
2 2
3 3
4 0
Explanation:
\({{\rm{C}}_{\rm{2}}}:\sigma 1{{\rm{s}}^{\rm{2}}}\;{\sigma ^{\rm{*}}}{\rm{1}}{{\rm{s}}^{\rm{2}}}\;\sigma {\rm{2}}{{\rm{s}}^{\rm{2}}}\;{\sigma ^{\rm{*}}}{\rm{2}}{{\rm{s}}^{\rm{2}}}\;\pi 2{\rm{p}}_x^2 = \pi 2{\rm{p}}_y^2\) Therefore, according to molecular orbital theory. the orbitals insolved in bonding are only \({\mathrm{\pi}}\) orbitals \(\pi 2{\rm{p}}_x^2 = \pi 2{{\rm{p}}_y}\). Since the last 4 electrons are in the pi molecular orbitals, there are two pi bonds.
CHXI04:CHEMICAL BONDING AND MOLECULAR STRUCTURE
313684
The correct order of bond dissociation energy among \({{\rm{N}}_{\rm{2}}}{\rm{,}}\,{{\rm{O}}_{\rm{2}}}{\rm{,}}\,{\rm{O}}_{\rm{2}}^{\rm{ - }}\) is shown which of the following arrangements?
The bond order of \({{\rm{N}}_{\rm{2}}}{\rm{,}}\,\,{{\rm{O}}_{\rm{2}}}\,\,{\rm{and}}\,\,{\rm{O}}_{\rm{2}}^{\rm{ - }}\) are respectively 3, 2 and 1.5 Since higher bond order implies higher bond dissociation energy hence the correct order will be \({{\rm{N}}_{\rm{2}}}{\rm{ > }}{{\rm{O}}_{\rm{2}}}{\rm{ > O}}_{\rm{2}}^{\rm{ - }}\)