Particle Nature of Electromagnetic Radiation
CHXI02:STRUCTURE OF ATOM

307399 A photon with initial frequency \({\rm{1}}{{\rm{0}}^{{\rm{11}}}}{\rm{Hz}}\) scatters off an electron at rest. Its final frequency is \({\rm{0}}{\rm{.9 \times 1}}{{\rm{0}}^{{\rm{11}}}}{\rm{Hz}}\). The speed of scattered electron is close to

1 \({\rm{4 \times 1}}{{\rm{0}}^{\rm{3}}}\,{\rm{m/s}}\)
2 \({\rm{3 \times 1}}{{\rm{0}}^{\rm{2}}}\,{\rm{m/s}}\)
3 \({\rm{2 \times 1}}{{\rm{0}}^{\rm{6}}}\,{\rm{m/s}}\)
4 \({\rm{30}}\,{\rm{m/s}}\)
CHXI02:STRUCTURE OF ATOM

307400 If \({{\rm{\lambda }}_{_{\rm{0}}}}\) and \({\rm{\lambda }}\) be threshold wavelength and wavelength of incident light, the velocity of photoelectron ejected from the metal surface is:

1 \(\sqrt {\frac{{{\rm{2h}}}}{{\rm{m}}}\left( {{{\rm{\lambda }}_{\rm{0}}}{\rm{ - \lambda }}} \right)} \)
2 \(\sqrt {\frac{{{\rm{2hc}}}}{{\rm{m}}}\left( {{{\rm{\lambda }}_{\rm{0}}}{\rm{ - \lambda }}} \right)} \)
3 \(\sqrt {\frac{{{\rm{2hc}}}}{{\rm{m}}}\left( {\frac{{{{\rm{\lambda }}_{\rm{0}}}{\rm{ - \lambda }}}}{{{\rm{\lambda }}{{\rm{\lambda }}_{\rm{0}}}}}} \right)} \)
4 \(\sqrt {\frac{{{\rm{2hc}}}}{{\rm{m}}}\left( {\frac{{\rm{1}}}{{{{\rm{\lambda }}_{\rm{0}}}}}{\rm{ - }}\frac{{\rm{1}}}{{\rm{\lambda }}}} \right)} \)
CHXI02:STRUCTURE OF ATOM

307401 A light source of wavelength \({\rm{\lambda }}\) illuminates a metal and eject photoelectrons with \({\left( {K.E.} \right)_{\max }} = 1\,eV\). Another light source of wavelength \({\rm{\lambda /3}}\) ejects photoelectrons from same metal with \({\left( {K.E.} \right)_{\max }} = 4\,eV\). Find the value of work function?

1 \({\rm{1}}\,{\rm{eV}}\)
2 \({\rm{2}}\,{\rm{eV}}\)
3 \({\rm{0}}{\rm{.5}}\,{\rm{eV}}\)
4 \({\rm{None }}\,{\rm{of }}\,{\rm{these}}\)
CHXI02:STRUCTURE OF ATOM

307402 The kinetic energy of the photoelectrons increases linearly with

1 The frequency of incident light
2 The number of photoelectrons emitted
3 The nature of metal
4 Intensity of light
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXI02:STRUCTURE OF ATOM

307399 A photon with initial frequency \({\rm{1}}{{\rm{0}}^{{\rm{11}}}}{\rm{Hz}}\) scatters off an electron at rest. Its final frequency is \({\rm{0}}{\rm{.9 \times 1}}{{\rm{0}}^{{\rm{11}}}}{\rm{Hz}}\). The speed of scattered electron is close to

1 \({\rm{4 \times 1}}{{\rm{0}}^{\rm{3}}}\,{\rm{m/s}}\)
2 \({\rm{3 \times 1}}{{\rm{0}}^{\rm{2}}}\,{\rm{m/s}}\)
3 \({\rm{2 \times 1}}{{\rm{0}}^{\rm{6}}}\,{\rm{m/s}}\)
4 \({\rm{30}}\,{\rm{m/s}}\)
CHXI02:STRUCTURE OF ATOM

307400 If \({{\rm{\lambda }}_{_{\rm{0}}}}\) and \({\rm{\lambda }}\) be threshold wavelength and wavelength of incident light, the velocity of photoelectron ejected from the metal surface is:

1 \(\sqrt {\frac{{{\rm{2h}}}}{{\rm{m}}}\left( {{{\rm{\lambda }}_{\rm{0}}}{\rm{ - \lambda }}} \right)} \)
2 \(\sqrt {\frac{{{\rm{2hc}}}}{{\rm{m}}}\left( {{{\rm{\lambda }}_{\rm{0}}}{\rm{ - \lambda }}} \right)} \)
3 \(\sqrt {\frac{{{\rm{2hc}}}}{{\rm{m}}}\left( {\frac{{{{\rm{\lambda }}_{\rm{0}}}{\rm{ - \lambda }}}}{{{\rm{\lambda }}{{\rm{\lambda }}_{\rm{0}}}}}} \right)} \)
4 \(\sqrt {\frac{{{\rm{2hc}}}}{{\rm{m}}}\left( {\frac{{\rm{1}}}{{{{\rm{\lambda }}_{\rm{0}}}}}{\rm{ - }}\frac{{\rm{1}}}{{\rm{\lambda }}}} \right)} \)
CHXI02:STRUCTURE OF ATOM

307401 A light source of wavelength \({\rm{\lambda }}\) illuminates a metal and eject photoelectrons with \({\left( {K.E.} \right)_{\max }} = 1\,eV\). Another light source of wavelength \({\rm{\lambda /3}}\) ejects photoelectrons from same metal with \({\left( {K.E.} \right)_{\max }} = 4\,eV\). Find the value of work function?

1 \({\rm{1}}\,{\rm{eV}}\)
2 \({\rm{2}}\,{\rm{eV}}\)
3 \({\rm{0}}{\rm{.5}}\,{\rm{eV}}\)
4 \({\rm{None }}\,{\rm{of }}\,{\rm{these}}\)
CHXI02:STRUCTURE OF ATOM

307402 The kinetic energy of the photoelectrons increases linearly with

1 The frequency of incident light
2 The number of photoelectrons emitted
3 The nature of metal
4 Intensity of light
CHXI02:STRUCTURE OF ATOM

307399 A photon with initial frequency \({\rm{1}}{{\rm{0}}^{{\rm{11}}}}{\rm{Hz}}\) scatters off an electron at rest. Its final frequency is \({\rm{0}}{\rm{.9 \times 1}}{{\rm{0}}^{{\rm{11}}}}{\rm{Hz}}\). The speed of scattered electron is close to

1 \({\rm{4 \times 1}}{{\rm{0}}^{\rm{3}}}\,{\rm{m/s}}\)
2 \({\rm{3 \times 1}}{{\rm{0}}^{\rm{2}}}\,{\rm{m/s}}\)
3 \({\rm{2 \times 1}}{{\rm{0}}^{\rm{6}}}\,{\rm{m/s}}\)
4 \({\rm{30}}\,{\rm{m/s}}\)
CHXI02:STRUCTURE OF ATOM

307400 If \({{\rm{\lambda }}_{_{\rm{0}}}}\) and \({\rm{\lambda }}\) be threshold wavelength and wavelength of incident light, the velocity of photoelectron ejected from the metal surface is:

1 \(\sqrt {\frac{{{\rm{2h}}}}{{\rm{m}}}\left( {{{\rm{\lambda }}_{\rm{0}}}{\rm{ - \lambda }}} \right)} \)
2 \(\sqrt {\frac{{{\rm{2hc}}}}{{\rm{m}}}\left( {{{\rm{\lambda }}_{\rm{0}}}{\rm{ - \lambda }}} \right)} \)
3 \(\sqrt {\frac{{{\rm{2hc}}}}{{\rm{m}}}\left( {\frac{{{{\rm{\lambda }}_{\rm{0}}}{\rm{ - \lambda }}}}{{{\rm{\lambda }}{{\rm{\lambda }}_{\rm{0}}}}}} \right)} \)
4 \(\sqrt {\frac{{{\rm{2hc}}}}{{\rm{m}}}\left( {\frac{{\rm{1}}}{{{{\rm{\lambda }}_{\rm{0}}}}}{\rm{ - }}\frac{{\rm{1}}}{{\rm{\lambda }}}} \right)} \)
CHXI02:STRUCTURE OF ATOM

307401 A light source of wavelength \({\rm{\lambda }}\) illuminates a metal and eject photoelectrons with \({\left( {K.E.} \right)_{\max }} = 1\,eV\). Another light source of wavelength \({\rm{\lambda /3}}\) ejects photoelectrons from same metal with \({\left( {K.E.} \right)_{\max }} = 4\,eV\). Find the value of work function?

1 \({\rm{1}}\,{\rm{eV}}\)
2 \({\rm{2}}\,{\rm{eV}}\)
3 \({\rm{0}}{\rm{.5}}\,{\rm{eV}}\)
4 \({\rm{None }}\,{\rm{of }}\,{\rm{these}}\)
CHXI02:STRUCTURE OF ATOM

307402 The kinetic energy of the photoelectrons increases linearly with

1 The frequency of incident light
2 The number of photoelectrons emitted
3 The nature of metal
4 Intensity of light
CHXI02:STRUCTURE OF ATOM

307399 A photon with initial frequency \({\rm{1}}{{\rm{0}}^{{\rm{11}}}}{\rm{Hz}}\) scatters off an electron at rest. Its final frequency is \({\rm{0}}{\rm{.9 \times 1}}{{\rm{0}}^{{\rm{11}}}}{\rm{Hz}}\). The speed of scattered electron is close to

1 \({\rm{4 \times 1}}{{\rm{0}}^{\rm{3}}}\,{\rm{m/s}}\)
2 \({\rm{3 \times 1}}{{\rm{0}}^{\rm{2}}}\,{\rm{m/s}}\)
3 \({\rm{2 \times 1}}{{\rm{0}}^{\rm{6}}}\,{\rm{m/s}}\)
4 \({\rm{30}}\,{\rm{m/s}}\)
CHXI02:STRUCTURE OF ATOM

307400 If \({{\rm{\lambda }}_{_{\rm{0}}}}\) and \({\rm{\lambda }}\) be threshold wavelength and wavelength of incident light, the velocity of photoelectron ejected from the metal surface is:

1 \(\sqrt {\frac{{{\rm{2h}}}}{{\rm{m}}}\left( {{{\rm{\lambda }}_{\rm{0}}}{\rm{ - \lambda }}} \right)} \)
2 \(\sqrt {\frac{{{\rm{2hc}}}}{{\rm{m}}}\left( {{{\rm{\lambda }}_{\rm{0}}}{\rm{ - \lambda }}} \right)} \)
3 \(\sqrt {\frac{{{\rm{2hc}}}}{{\rm{m}}}\left( {\frac{{{{\rm{\lambda }}_{\rm{0}}}{\rm{ - \lambda }}}}{{{\rm{\lambda }}{{\rm{\lambda }}_{\rm{0}}}}}} \right)} \)
4 \(\sqrt {\frac{{{\rm{2hc}}}}{{\rm{m}}}\left( {\frac{{\rm{1}}}{{{{\rm{\lambda }}_{\rm{0}}}}}{\rm{ - }}\frac{{\rm{1}}}{{\rm{\lambda }}}} \right)} \)
CHXI02:STRUCTURE OF ATOM

307401 A light source of wavelength \({\rm{\lambda }}\) illuminates a metal and eject photoelectrons with \({\left( {K.E.} \right)_{\max }} = 1\,eV\). Another light source of wavelength \({\rm{\lambda /3}}\) ejects photoelectrons from same metal with \({\left( {K.E.} \right)_{\max }} = 4\,eV\). Find the value of work function?

1 \({\rm{1}}\,{\rm{eV}}\)
2 \({\rm{2}}\,{\rm{eV}}\)
3 \({\rm{0}}{\rm{.5}}\,{\rm{eV}}\)
4 \({\rm{None }}\,{\rm{of }}\,{\rm{these}}\)
CHXI02:STRUCTURE OF ATOM

307402 The kinetic energy of the photoelectrons increases linearly with

1 The frequency of incident light
2 The number of photoelectrons emitted
3 The nature of metal
4 Intensity of light