Filling of Orbitals in Atom
CHXI02:STRUCTURE OF ATOM

307337 The elctrons identified by quantum numbers n and l
\({\rm{(1)}}\,\,{\rm{n = 4,l = 1}}\,\,\,\,\,\,{\rm{(2)}}{\mkern 1mu} \,{\rm{n = 4,l = 0}}\)
\({\rm{(3)}}\,\,{\rm{n = 3,}}\,{\rm{l = 2}}\,\,\,\,\,{\rm{(4)}}\,\,{\rm{n = 3,}}\,{\rm{l = 1}}\)
can be placed in the order of increasing energy as

1 \({\rm{(3) < (4) < (2) < (1)}}\)
2 \({\rm{(4) < (2) < (3) < (1)}}\)
3 \({\rm{(2) < (4) < (1) < (3)}}\)
4 \({\rm{(1) < (3) < (2) < (4)}}\)
CHXI02:STRUCTURE OF ATOM

307338 If the electron structure of oxygen atom is written as \({\rm{1}}{{\rm{s}}^{\rm{2}}}{\rm{,2}}{{\rm{s}}^{\rm{2}}}\) it would violate
supporting img

1 Hund’s rule
2 Pauli’s exclusion principle
3 Both Hund’s and Pauli’s principles
4 None of these
CHXI02:STRUCTURE OF ATOM

307339 Match Column I with Column II and choose the correct combination from the options given.
supporting img

1 \((1){\mkern 1mu} \,{\text{A}} - {\text{R}},{\text{B}} - {\text{P}},{\text{C}} - {\text{Q}},{\text{D}} - {\text{S}}\)
2 \((2)\,{\rm{A}} - {\rm{Q}},{\rm{ B}} - {\rm{S}},{\rm{ C}} - {\rm{R}},{\rm{ D}} - {\rm{P}}\)
3 \((3)\,{\rm{A}} - {\rm{P}},{\rm{ B}} - {\rm{R}},{\rm{ C}} - {\rm{Q}},{\rm{ D}} - {\rm{S}}\)
4 \((4)\,{\rm{A}} - {\rm{S}},{\rm{ B}} - {\rm{P}},{\rm{ C}} - {\rm{R}},{\rm{ D}} - {\rm{Q}}\)
CHXI02:STRUCTURE OF ATOM

307341 It is not possible to explain the Pauli’s exclusion principle with the help of this atom

1 \({\rm{B}}\)
2 \({\rm{Be}}\)
3 \({\rm{C}}\)
4 \({\rm{H}}\)
CHXI02:STRUCTURE OF ATOM

307342 “No two electrons in an atom can have the same set of four quantum numbers”. This principle was enunciated by

1 Heisenberg
2 Pauli
3 Maxwell
4 de Broglie
CHXI02:STRUCTURE OF ATOM

307337 The elctrons identified by quantum numbers n and l
\({\rm{(1)}}\,\,{\rm{n = 4,l = 1}}\,\,\,\,\,\,{\rm{(2)}}{\mkern 1mu} \,{\rm{n = 4,l = 0}}\)
\({\rm{(3)}}\,\,{\rm{n = 3,}}\,{\rm{l = 2}}\,\,\,\,\,{\rm{(4)}}\,\,{\rm{n = 3,}}\,{\rm{l = 1}}\)
can be placed in the order of increasing energy as

1 \({\rm{(3) < (4) < (2) < (1)}}\)
2 \({\rm{(4) < (2) < (3) < (1)}}\)
3 \({\rm{(2) < (4) < (1) < (3)}}\)
4 \({\rm{(1) < (3) < (2) < (4)}}\)
CHXI02:STRUCTURE OF ATOM

307338 If the electron structure of oxygen atom is written as \({\rm{1}}{{\rm{s}}^{\rm{2}}}{\rm{,2}}{{\rm{s}}^{\rm{2}}}\) it would violate
supporting img

1 Hund’s rule
2 Pauli’s exclusion principle
3 Both Hund’s and Pauli’s principles
4 None of these
CHXI02:STRUCTURE OF ATOM

307339 Match Column I with Column II and choose the correct combination from the options given.
supporting img

1 \((1){\mkern 1mu} \,{\text{A}} - {\text{R}},{\text{B}} - {\text{P}},{\text{C}} - {\text{Q}},{\text{D}} - {\text{S}}\)
2 \((2)\,{\rm{A}} - {\rm{Q}},{\rm{ B}} - {\rm{S}},{\rm{ C}} - {\rm{R}},{\rm{ D}} - {\rm{P}}\)
3 \((3)\,{\rm{A}} - {\rm{P}},{\rm{ B}} - {\rm{R}},{\rm{ C}} - {\rm{Q}},{\rm{ D}} - {\rm{S}}\)
4 \((4)\,{\rm{A}} - {\rm{S}},{\rm{ B}} - {\rm{P}},{\rm{ C}} - {\rm{R}},{\rm{ D}} - {\rm{Q}}\)
CHXI02:STRUCTURE OF ATOM

307341 It is not possible to explain the Pauli’s exclusion principle with the help of this atom

1 \({\rm{B}}\)
2 \({\rm{Be}}\)
3 \({\rm{C}}\)
4 \({\rm{H}}\)
CHXI02:STRUCTURE OF ATOM

307342 “No two electrons in an atom can have the same set of four quantum numbers”. This principle was enunciated by

1 Heisenberg
2 Pauli
3 Maxwell
4 de Broglie
CHXI02:STRUCTURE OF ATOM

307337 The elctrons identified by quantum numbers n and l
\({\rm{(1)}}\,\,{\rm{n = 4,l = 1}}\,\,\,\,\,\,{\rm{(2)}}{\mkern 1mu} \,{\rm{n = 4,l = 0}}\)
\({\rm{(3)}}\,\,{\rm{n = 3,}}\,{\rm{l = 2}}\,\,\,\,\,{\rm{(4)}}\,\,{\rm{n = 3,}}\,{\rm{l = 1}}\)
can be placed in the order of increasing energy as

1 \({\rm{(3) < (4) < (2) < (1)}}\)
2 \({\rm{(4) < (2) < (3) < (1)}}\)
3 \({\rm{(2) < (4) < (1) < (3)}}\)
4 \({\rm{(1) < (3) < (2) < (4)}}\)
CHXI02:STRUCTURE OF ATOM

307338 If the electron structure of oxygen atom is written as \({\rm{1}}{{\rm{s}}^{\rm{2}}}{\rm{,2}}{{\rm{s}}^{\rm{2}}}\) it would violate
supporting img

1 Hund’s rule
2 Pauli’s exclusion principle
3 Both Hund’s and Pauli’s principles
4 None of these
CHXI02:STRUCTURE OF ATOM

307339 Match Column I with Column II and choose the correct combination from the options given.
supporting img

1 \((1){\mkern 1mu} \,{\text{A}} - {\text{R}},{\text{B}} - {\text{P}},{\text{C}} - {\text{Q}},{\text{D}} - {\text{S}}\)
2 \((2)\,{\rm{A}} - {\rm{Q}},{\rm{ B}} - {\rm{S}},{\rm{ C}} - {\rm{R}},{\rm{ D}} - {\rm{P}}\)
3 \((3)\,{\rm{A}} - {\rm{P}},{\rm{ B}} - {\rm{R}},{\rm{ C}} - {\rm{Q}},{\rm{ D}} - {\rm{S}}\)
4 \((4)\,{\rm{A}} - {\rm{S}},{\rm{ B}} - {\rm{P}},{\rm{ C}} - {\rm{R}},{\rm{ D}} - {\rm{Q}}\)
CHXI02:STRUCTURE OF ATOM

307341 It is not possible to explain the Pauli’s exclusion principle with the help of this atom

1 \({\rm{B}}\)
2 \({\rm{Be}}\)
3 \({\rm{C}}\)
4 \({\rm{H}}\)
CHXI02:STRUCTURE OF ATOM

307342 “No two electrons in an atom can have the same set of four quantum numbers”. This principle was enunciated by

1 Heisenberg
2 Pauli
3 Maxwell
4 de Broglie
CHXI02:STRUCTURE OF ATOM

307337 The elctrons identified by quantum numbers n and l
\({\rm{(1)}}\,\,{\rm{n = 4,l = 1}}\,\,\,\,\,\,{\rm{(2)}}{\mkern 1mu} \,{\rm{n = 4,l = 0}}\)
\({\rm{(3)}}\,\,{\rm{n = 3,}}\,{\rm{l = 2}}\,\,\,\,\,{\rm{(4)}}\,\,{\rm{n = 3,}}\,{\rm{l = 1}}\)
can be placed in the order of increasing energy as

1 \({\rm{(3) < (4) < (2) < (1)}}\)
2 \({\rm{(4) < (2) < (3) < (1)}}\)
3 \({\rm{(2) < (4) < (1) < (3)}}\)
4 \({\rm{(1) < (3) < (2) < (4)}}\)
CHXI02:STRUCTURE OF ATOM

307338 If the electron structure of oxygen atom is written as \({\rm{1}}{{\rm{s}}^{\rm{2}}}{\rm{,2}}{{\rm{s}}^{\rm{2}}}\) it would violate
supporting img

1 Hund’s rule
2 Pauli’s exclusion principle
3 Both Hund’s and Pauli’s principles
4 None of these
CHXI02:STRUCTURE OF ATOM

307339 Match Column I with Column II and choose the correct combination from the options given.
supporting img

1 \((1){\mkern 1mu} \,{\text{A}} - {\text{R}},{\text{B}} - {\text{P}},{\text{C}} - {\text{Q}},{\text{D}} - {\text{S}}\)
2 \((2)\,{\rm{A}} - {\rm{Q}},{\rm{ B}} - {\rm{S}},{\rm{ C}} - {\rm{R}},{\rm{ D}} - {\rm{P}}\)
3 \((3)\,{\rm{A}} - {\rm{P}},{\rm{ B}} - {\rm{R}},{\rm{ C}} - {\rm{Q}},{\rm{ D}} - {\rm{S}}\)
4 \((4)\,{\rm{A}} - {\rm{S}},{\rm{ B}} - {\rm{P}},{\rm{ C}} - {\rm{R}},{\rm{ D}} - {\rm{Q}}\)
CHXI02:STRUCTURE OF ATOM

307341 It is not possible to explain the Pauli’s exclusion principle with the help of this atom

1 \({\rm{B}}\)
2 \({\rm{Be}}\)
3 \({\rm{C}}\)
4 \({\rm{H}}\)
CHXI02:STRUCTURE OF ATOM

307342 “No two electrons in an atom can have the same set of four quantum numbers”. This principle was enunciated by

1 Heisenberg
2 Pauli
3 Maxwell
4 de Broglie
CHXI02:STRUCTURE OF ATOM

307337 The elctrons identified by quantum numbers n and l
\({\rm{(1)}}\,\,{\rm{n = 4,l = 1}}\,\,\,\,\,\,{\rm{(2)}}{\mkern 1mu} \,{\rm{n = 4,l = 0}}\)
\({\rm{(3)}}\,\,{\rm{n = 3,}}\,{\rm{l = 2}}\,\,\,\,\,{\rm{(4)}}\,\,{\rm{n = 3,}}\,{\rm{l = 1}}\)
can be placed in the order of increasing energy as

1 \({\rm{(3) < (4) < (2) < (1)}}\)
2 \({\rm{(4) < (2) < (3) < (1)}}\)
3 \({\rm{(2) < (4) < (1) < (3)}}\)
4 \({\rm{(1) < (3) < (2) < (4)}}\)
CHXI02:STRUCTURE OF ATOM

307338 If the electron structure of oxygen atom is written as \({\rm{1}}{{\rm{s}}^{\rm{2}}}{\rm{,2}}{{\rm{s}}^{\rm{2}}}\) it would violate
supporting img

1 Hund’s rule
2 Pauli’s exclusion principle
3 Both Hund’s and Pauli’s principles
4 None of these
CHXI02:STRUCTURE OF ATOM

307339 Match Column I with Column II and choose the correct combination from the options given.
supporting img

1 \((1){\mkern 1mu} \,{\text{A}} - {\text{R}},{\text{B}} - {\text{P}},{\text{C}} - {\text{Q}},{\text{D}} - {\text{S}}\)
2 \((2)\,{\rm{A}} - {\rm{Q}},{\rm{ B}} - {\rm{S}},{\rm{ C}} - {\rm{R}},{\rm{ D}} - {\rm{P}}\)
3 \((3)\,{\rm{A}} - {\rm{P}},{\rm{ B}} - {\rm{R}},{\rm{ C}} - {\rm{Q}},{\rm{ D}} - {\rm{S}}\)
4 \((4)\,{\rm{A}} - {\rm{S}},{\rm{ B}} - {\rm{P}},{\rm{ C}} - {\rm{R}},{\rm{ D}} - {\rm{Q}}\)
CHXI02:STRUCTURE OF ATOM

307341 It is not possible to explain the Pauli’s exclusion principle with the help of this atom

1 \({\rm{B}}\)
2 \({\rm{Be}}\)
3 \({\rm{C}}\)
4 \({\rm{H}}\)
CHXI02:STRUCTURE OF ATOM

307342 “No two electrons in an atom can have the same set of four quantum numbers”. This principle was enunciated by

1 Heisenberg
2 Pauli
3 Maxwell
4 de Broglie