307219
de Broglie relationship has no significance for
1 an electron
2 a proton
3 a neutron
4 an iron ball.
Explanation:
Particles of large masses do not have wave properties. Hence, de Broglie relationship has no significance for an iron ball.
CHXI02:STRUCTURE OF ATOM
307220
Which of the following is correct? (I) A particle of light, photon, has a definite energy, \(\mathrm{E}=\mathrm{hv}\). (II) The photon has momentum, \(\mathrm{m}_{\mathrm{c}}\). (III) The momentum of photon is related to the wavelength of the light.
1 (I) and (II)
2 (I), (II) and (III)
3 (I) and (III)
4 (II) and (III)
Explanation:
According to Einstein, \(\mathrm{E}=\mathrm{hv}\) and according to de Broglie, \(\lambda=\dfrac{\mathrm{h}}{\mathrm{mv}}\)
CHXI02:STRUCTURE OF ATOM
307221
The de Broglie wavelength of a tennis ball of mass 60 g moving with a velocity of 10 metres per second is approximately
307222
An electron of velocity ‘v’ is found to have a certain value of de Broglie wavelength. The velocity possessed by neutron to have the same de Broglie wavelength is
1 \({\rm{1840}}\,{\rm{v}}\)
2 \(\frac{{\rm{v}}}{{{\rm{1840}}}}\)
3 \({\rm{3}}\,{\rm{v}}\)
4 \(\frac{{{\rm{1840}}}}{{\rm{v}}}\)
Explanation:
Since the mass of the neutron is 1840 times the mass of an electron.
CHXI02:STRUCTURE OF ATOM
307223
Find out the number of wave made by a Bohr electron in one complete revolution in its \({{\rm{3}}^{{\rm{rd}}}}\) orbit of hydrogen atom
1 \({\rm{1}}\)
2 \({\rm{2}}\)
3 \({\rm{3}}\)
4 \({\rm{4}}\)
Explanation:
Total no. of waves \({\rm{ = }}\frac{{{\rm{total}}\,{\rm{distance}}}}{{{\rm{wavelength}}\,{\rm{of}}\,{\rm{one}}\,{\rm{wave}}}}{\rm{ = }}\frac{{{\rm{2\pi r}}}}{{\rm{\lambda }}}\) Velocity of the electron in \({{\rm{3}}^{{\rm{rd}}}}\) orbit \({\rm{ = }}\frac{{{\rm{3h}}}}{{{\rm{2\pi mr}}}}\) Here \({\rm{m = }}\) mass of electron \({\rm{r = }}\) radius of \({{\rm{3}}^{{\rm{rd}}}}\) orbit According to be-Brogile equation \({\rm{\lambda = }}\frac{{\rm{h}}}{{{\rm{mv}}}}{\rm{ = }}\frac{{\rm{h}}}{{\rm{m}}}{\rm{ \times }}\frac{{{\rm{2\pi mr}}}}{{{\rm{3h}}}}{\rm{ = }}\frac{{{\rm{2\pi r}}}}{{\rm{3}}}\) \({\rm{ = }}\frac{{{\rm{2\pi r}}}}{{{\rm{2\pi r}}}}{\rm{ \times 3 = 3}}\)
307219
de Broglie relationship has no significance for
1 an electron
2 a proton
3 a neutron
4 an iron ball.
Explanation:
Particles of large masses do not have wave properties. Hence, de Broglie relationship has no significance for an iron ball.
CHXI02:STRUCTURE OF ATOM
307220
Which of the following is correct? (I) A particle of light, photon, has a definite energy, \(\mathrm{E}=\mathrm{hv}\). (II) The photon has momentum, \(\mathrm{m}_{\mathrm{c}}\). (III) The momentum of photon is related to the wavelength of the light.
1 (I) and (II)
2 (I), (II) and (III)
3 (I) and (III)
4 (II) and (III)
Explanation:
According to Einstein, \(\mathrm{E}=\mathrm{hv}\) and according to de Broglie, \(\lambda=\dfrac{\mathrm{h}}{\mathrm{mv}}\)
CHXI02:STRUCTURE OF ATOM
307221
The de Broglie wavelength of a tennis ball of mass 60 g moving with a velocity of 10 metres per second is approximately
307222
An electron of velocity ‘v’ is found to have a certain value of de Broglie wavelength. The velocity possessed by neutron to have the same de Broglie wavelength is
1 \({\rm{1840}}\,{\rm{v}}\)
2 \(\frac{{\rm{v}}}{{{\rm{1840}}}}\)
3 \({\rm{3}}\,{\rm{v}}\)
4 \(\frac{{{\rm{1840}}}}{{\rm{v}}}\)
Explanation:
Since the mass of the neutron is 1840 times the mass of an electron.
CHXI02:STRUCTURE OF ATOM
307223
Find out the number of wave made by a Bohr electron in one complete revolution in its \({{\rm{3}}^{{\rm{rd}}}}\) orbit of hydrogen atom
1 \({\rm{1}}\)
2 \({\rm{2}}\)
3 \({\rm{3}}\)
4 \({\rm{4}}\)
Explanation:
Total no. of waves \({\rm{ = }}\frac{{{\rm{total}}\,{\rm{distance}}}}{{{\rm{wavelength}}\,{\rm{of}}\,{\rm{one}}\,{\rm{wave}}}}{\rm{ = }}\frac{{{\rm{2\pi r}}}}{{\rm{\lambda }}}\) Velocity of the electron in \({{\rm{3}}^{{\rm{rd}}}}\) orbit \({\rm{ = }}\frac{{{\rm{3h}}}}{{{\rm{2\pi mr}}}}\) Here \({\rm{m = }}\) mass of electron \({\rm{r = }}\) radius of \({{\rm{3}}^{{\rm{rd}}}}\) orbit According to be-Brogile equation \({\rm{\lambda = }}\frac{{\rm{h}}}{{{\rm{mv}}}}{\rm{ = }}\frac{{\rm{h}}}{{\rm{m}}}{\rm{ \times }}\frac{{{\rm{2\pi mr}}}}{{{\rm{3h}}}}{\rm{ = }}\frac{{{\rm{2\pi r}}}}{{\rm{3}}}\) \({\rm{ = }}\frac{{{\rm{2\pi r}}}}{{{\rm{2\pi r}}}}{\rm{ \times 3 = 3}}\)
307219
de Broglie relationship has no significance for
1 an electron
2 a proton
3 a neutron
4 an iron ball.
Explanation:
Particles of large masses do not have wave properties. Hence, de Broglie relationship has no significance for an iron ball.
CHXI02:STRUCTURE OF ATOM
307220
Which of the following is correct? (I) A particle of light, photon, has a definite energy, \(\mathrm{E}=\mathrm{hv}\). (II) The photon has momentum, \(\mathrm{m}_{\mathrm{c}}\). (III) The momentum of photon is related to the wavelength of the light.
1 (I) and (II)
2 (I), (II) and (III)
3 (I) and (III)
4 (II) and (III)
Explanation:
According to Einstein, \(\mathrm{E}=\mathrm{hv}\) and according to de Broglie, \(\lambda=\dfrac{\mathrm{h}}{\mathrm{mv}}\)
CHXI02:STRUCTURE OF ATOM
307221
The de Broglie wavelength of a tennis ball of mass 60 g moving with a velocity of 10 metres per second is approximately
307222
An electron of velocity ‘v’ is found to have a certain value of de Broglie wavelength. The velocity possessed by neutron to have the same de Broglie wavelength is
1 \({\rm{1840}}\,{\rm{v}}\)
2 \(\frac{{\rm{v}}}{{{\rm{1840}}}}\)
3 \({\rm{3}}\,{\rm{v}}\)
4 \(\frac{{{\rm{1840}}}}{{\rm{v}}}\)
Explanation:
Since the mass of the neutron is 1840 times the mass of an electron.
CHXI02:STRUCTURE OF ATOM
307223
Find out the number of wave made by a Bohr electron in one complete revolution in its \({{\rm{3}}^{{\rm{rd}}}}\) orbit of hydrogen atom
1 \({\rm{1}}\)
2 \({\rm{2}}\)
3 \({\rm{3}}\)
4 \({\rm{4}}\)
Explanation:
Total no. of waves \({\rm{ = }}\frac{{{\rm{total}}\,{\rm{distance}}}}{{{\rm{wavelength}}\,{\rm{of}}\,{\rm{one}}\,{\rm{wave}}}}{\rm{ = }}\frac{{{\rm{2\pi r}}}}{{\rm{\lambda }}}\) Velocity of the electron in \({{\rm{3}}^{{\rm{rd}}}}\) orbit \({\rm{ = }}\frac{{{\rm{3h}}}}{{{\rm{2\pi mr}}}}\) Here \({\rm{m = }}\) mass of electron \({\rm{r = }}\) radius of \({{\rm{3}}^{{\rm{rd}}}}\) orbit According to be-Brogile equation \({\rm{\lambda = }}\frac{{\rm{h}}}{{{\rm{mv}}}}{\rm{ = }}\frac{{\rm{h}}}{{\rm{m}}}{\rm{ \times }}\frac{{{\rm{2\pi mr}}}}{{{\rm{3h}}}}{\rm{ = }}\frac{{{\rm{2\pi r}}}}{{\rm{3}}}\) \({\rm{ = }}\frac{{{\rm{2\pi r}}}}{{{\rm{2\pi r}}}}{\rm{ \times 3 = 3}}\)
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
CHXI02:STRUCTURE OF ATOM
307219
de Broglie relationship has no significance for
1 an electron
2 a proton
3 a neutron
4 an iron ball.
Explanation:
Particles of large masses do not have wave properties. Hence, de Broglie relationship has no significance for an iron ball.
CHXI02:STRUCTURE OF ATOM
307220
Which of the following is correct? (I) A particle of light, photon, has a definite energy, \(\mathrm{E}=\mathrm{hv}\). (II) The photon has momentum, \(\mathrm{m}_{\mathrm{c}}\). (III) The momentum of photon is related to the wavelength of the light.
1 (I) and (II)
2 (I), (II) and (III)
3 (I) and (III)
4 (II) and (III)
Explanation:
According to Einstein, \(\mathrm{E}=\mathrm{hv}\) and according to de Broglie, \(\lambda=\dfrac{\mathrm{h}}{\mathrm{mv}}\)
CHXI02:STRUCTURE OF ATOM
307221
The de Broglie wavelength of a tennis ball of mass 60 g moving with a velocity of 10 metres per second is approximately
307222
An electron of velocity ‘v’ is found to have a certain value of de Broglie wavelength. The velocity possessed by neutron to have the same de Broglie wavelength is
1 \({\rm{1840}}\,{\rm{v}}\)
2 \(\frac{{\rm{v}}}{{{\rm{1840}}}}\)
3 \({\rm{3}}\,{\rm{v}}\)
4 \(\frac{{{\rm{1840}}}}{{\rm{v}}}\)
Explanation:
Since the mass of the neutron is 1840 times the mass of an electron.
CHXI02:STRUCTURE OF ATOM
307223
Find out the number of wave made by a Bohr electron in one complete revolution in its \({{\rm{3}}^{{\rm{rd}}}}\) orbit of hydrogen atom
1 \({\rm{1}}\)
2 \({\rm{2}}\)
3 \({\rm{3}}\)
4 \({\rm{4}}\)
Explanation:
Total no. of waves \({\rm{ = }}\frac{{{\rm{total}}\,{\rm{distance}}}}{{{\rm{wavelength}}\,{\rm{of}}\,{\rm{one}}\,{\rm{wave}}}}{\rm{ = }}\frac{{{\rm{2\pi r}}}}{{\rm{\lambda }}}\) Velocity of the electron in \({{\rm{3}}^{{\rm{rd}}}}\) orbit \({\rm{ = }}\frac{{{\rm{3h}}}}{{{\rm{2\pi mr}}}}\) Here \({\rm{m = }}\) mass of electron \({\rm{r = }}\) radius of \({{\rm{3}}^{{\rm{rd}}}}\) orbit According to be-Brogile equation \({\rm{\lambda = }}\frac{{\rm{h}}}{{{\rm{mv}}}}{\rm{ = }}\frac{{\rm{h}}}{{\rm{m}}}{\rm{ \times }}\frac{{{\rm{2\pi mr}}}}{{{\rm{3h}}}}{\rm{ = }}\frac{{{\rm{2\pi r}}}}{{\rm{3}}}\) \({\rm{ = }}\frac{{{\rm{2\pi r}}}}{{{\rm{2\pi r}}}}{\rm{ \times 3 = 3}}\)
307219
de Broglie relationship has no significance for
1 an electron
2 a proton
3 a neutron
4 an iron ball.
Explanation:
Particles of large masses do not have wave properties. Hence, de Broglie relationship has no significance for an iron ball.
CHXI02:STRUCTURE OF ATOM
307220
Which of the following is correct? (I) A particle of light, photon, has a definite energy, \(\mathrm{E}=\mathrm{hv}\). (II) The photon has momentum, \(\mathrm{m}_{\mathrm{c}}\). (III) The momentum of photon is related to the wavelength of the light.
1 (I) and (II)
2 (I), (II) and (III)
3 (I) and (III)
4 (II) and (III)
Explanation:
According to Einstein, \(\mathrm{E}=\mathrm{hv}\) and according to de Broglie, \(\lambda=\dfrac{\mathrm{h}}{\mathrm{mv}}\)
CHXI02:STRUCTURE OF ATOM
307221
The de Broglie wavelength of a tennis ball of mass 60 g moving with a velocity of 10 metres per second is approximately
307222
An electron of velocity ‘v’ is found to have a certain value of de Broglie wavelength. The velocity possessed by neutron to have the same de Broglie wavelength is
1 \({\rm{1840}}\,{\rm{v}}\)
2 \(\frac{{\rm{v}}}{{{\rm{1840}}}}\)
3 \({\rm{3}}\,{\rm{v}}\)
4 \(\frac{{{\rm{1840}}}}{{\rm{v}}}\)
Explanation:
Since the mass of the neutron is 1840 times the mass of an electron.
CHXI02:STRUCTURE OF ATOM
307223
Find out the number of wave made by a Bohr electron in one complete revolution in its \({{\rm{3}}^{{\rm{rd}}}}\) orbit of hydrogen atom
1 \({\rm{1}}\)
2 \({\rm{2}}\)
3 \({\rm{3}}\)
4 \({\rm{4}}\)
Explanation:
Total no. of waves \({\rm{ = }}\frac{{{\rm{total}}\,{\rm{distance}}}}{{{\rm{wavelength}}\,{\rm{of}}\,{\rm{one}}\,{\rm{wave}}}}{\rm{ = }}\frac{{{\rm{2\pi r}}}}{{\rm{\lambda }}}\) Velocity of the electron in \({{\rm{3}}^{{\rm{rd}}}}\) orbit \({\rm{ = }}\frac{{{\rm{3h}}}}{{{\rm{2\pi mr}}}}\) Here \({\rm{m = }}\) mass of electron \({\rm{r = }}\) radius of \({{\rm{3}}^{{\rm{rd}}}}\) orbit According to be-Brogile equation \({\rm{\lambda = }}\frac{{\rm{h}}}{{{\rm{mv}}}}{\rm{ = }}\frac{{\rm{h}}}{{\rm{m}}}{\rm{ \times }}\frac{{{\rm{2\pi mr}}}}{{{\rm{3h}}}}{\rm{ = }}\frac{{{\rm{2\pi r}}}}{{\rm{3}}}\) \({\rm{ = }}\frac{{{\rm{2\pi r}}}}{{{\rm{2\pi r}}}}{\rm{ \times 3 = 3}}\)