Bohr's Model for Hydrogen Atom
CHXI02:STRUCTURE OF ATOM

307158 The energy of electron in first Bohr’s orbit of H-atom is –13.6 eV. What will be its potential energy in \({{\rm{4}}^{{\rm{th}}}}\) orbit ?

1 \({\rm{ - 13}}{\rm{.6}}\,{\rm{eV}}\)
2 \({\rm{ - 3}}{\rm{.4}}\,{\rm{eV}}\)
3 \({\rm{ - 0}}{\rm{.85}}\,{\rm{eV}}\)
4 \({\rm{ - 1}}{\rm{.70}}\,{\rm{eV}}\)
CHXI02:STRUCTURE OF ATOM

307160 If m and e are the mass and charge of the revolving electron in the orbit of radius r for hydrogen atom, the total energy of the revolving electron will be:

1 \(\frac{{\rm{1}}}{{\rm{2}}}\,\frac{{{{\rm{e}}^{\rm{2}}}}}{{\rm{r}}}\)
2 \({\rm{ - }}\,\,\frac{{{{\rm{e}}^{\rm{2}}}}}{{\rm{r}}}\)
3 \(\frac{{{\rm{m}}{{\rm{e}}^{\rm{2}}}}}{{\rm{r}}}\)
4 \({\rm{ - }}\frac{{\rm{1}}}{{\rm{2}}}\,\frac{{{{\rm{e}}^{\rm{2}}}}}{{\rm{r}}}\)
CHXI02:STRUCTURE OF ATOM

307131 According to Bohr’s atomic theory, the correct statement is

1 Potential energy of electron \({\rm{\alpha }}\frac{{{{\rm{Z}}^{\rm{2}}}}}{{{{\rm{n}}^{\rm{2}}}}}\)
2 The product of velocity of electron and principal quantum number (n) \({\rm{\alpha }}\;{{\rm{Z}}^{\rm{2}}}\)
3 Frequency of revolution of electron in an orbit \({\rm{\alpha }}\frac{{{{\rm{Z}}^{\rm{2}}}}}{{{{\rm{n}}^{\rm{3}}}}}\)
4 Coulombic force of attraction on the electron \({\rm{\alpha }}\frac{{{{\rm{Z}}^{\rm{2}}}}}{{{{\rm{n}}^{\rm{2}}}}}\)
CHXI02:STRUCTURE OF ATOM

307132 The amount of energy required to remove the electron from a \({\rm{L}}{{\rm{i}}^{{\rm{2 + }}}}\) ion in its ground state is how many times greater than the amount of energy needed to remove the electron from an H atom in its ground state?

1 \({\rm{2}}\)
2 \({\rm{9}}\)
3 \({\rm{4}}\)
4 \({\rm{6}}\)
CHXI02:STRUCTURE OF ATOM

307133 The ionisation energy of \({\rm{H}}{{\rm{e}}^{\rm{ + }}}\) is \({\rm{19}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{ - 18}}}}{\rm{J}}\,{\rm{ato}}{{\rm{m}}^{{\rm{ - 1}}}}\) . The energy of the first stationary state of \({\rm{L}}{{\rm{i}}^{{\rm{ + 2}}}}\) will be

1 \({\rm{21}}{\rm{.2 \times 1}}{{\rm{0}}^{{\rm{ - 18}}}}\,{\rm{J/atom}}\)
2 \({\rm{44}}{\rm{.10 \times 1}}{{\rm{0}}^{{\rm{ - 18}}}}\,{\rm{J/atom}}\)
3 \({\rm{63}}{\rm{.2 \times 1}}{{\rm{0}}^{{\rm{ - 18}}}}\,{\rm{J/atom}}\)
4 \({\rm{84}}{\rm{.2 \times 1}}{{\rm{0}}^{{\rm{ - 18}}}}\,{\rm{J/atom}}\)
CHXI02:STRUCTURE OF ATOM

307158 The energy of electron in first Bohr’s orbit of H-atom is –13.6 eV. What will be its potential energy in \({{\rm{4}}^{{\rm{th}}}}\) orbit ?

1 \({\rm{ - 13}}{\rm{.6}}\,{\rm{eV}}\)
2 \({\rm{ - 3}}{\rm{.4}}\,{\rm{eV}}\)
3 \({\rm{ - 0}}{\rm{.85}}\,{\rm{eV}}\)
4 \({\rm{ - 1}}{\rm{.70}}\,{\rm{eV}}\)
CHXI02:STRUCTURE OF ATOM

307160 If m and e are the mass and charge of the revolving electron in the orbit of radius r for hydrogen atom, the total energy of the revolving electron will be:

1 \(\frac{{\rm{1}}}{{\rm{2}}}\,\frac{{{{\rm{e}}^{\rm{2}}}}}{{\rm{r}}}\)
2 \({\rm{ - }}\,\,\frac{{{{\rm{e}}^{\rm{2}}}}}{{\rm{r}}}\)
3 \(\frac{{{\rm{m}}{{\rm{e}}^{\rm{2}}}}}{{\rm{r}}}\)
4 \({\rm{ - }}\frac{{\rm{1}}}{{\rm{2}}}\,\frac{{{{\rm{e}}^{\rm{2}}}}}{{\rm{r}}}\)
CHXI02:STRUCTURE OF ATOM

307131 According to Bohr’s atomic theory, the correct statement is

1 Potential energy of electron \({\rm{\alpha }}\frac{{{{\rm{Z}}^{\rm{2}}}}}{{{{\rm{n}}^{\rm{2}}}}}\)
2 The product of velocity of electron and principal quantum number (n) \({\rm{\alpha }}\;{{\rm{Z}}^{\rm{2}}}\)
3 Frequency of revolution of electron in an orbit \({\rm{\alpha }}\frac{{{{\rm{Z}}^{\rm{2}}}}}{{{{\rm{n}}^{\rm{3}}}}}\)
4 Coulombic force of attraction on the electron \({\rm{\alpha }}\frac{{{{\rm{Z}}^{\rm{2}}}}}{{{{\rm{n}}^{\rm{2}}}}}\)
CHXI02:STRUCTURE OF ATOM

307132 The amount of energy required to remove the electron from a \({\rm{L}}{{\rm{i}}^{{\rm{2 + }}}}\) ion in its ground state is how many times greater than the amount of energy needed to remove the electron from an H atom in its ground state?

1 \({\rm{2}}\)
2 \({\rm{9}}\)
3 \({\rm{4}}\)
4 \({\rm{6}}\)
CHXI02:STRUCTURE OF ATOM

307133 The ionisation energy of \({\rm{H}}{{\rm{e}}^{\rm{ + }}}\) is \({\rm{19}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{ - 18}}}}{\rm{J}}\,{\rm{ato}}{{\rm{m}}^{{\rm{ - 1}}}}\) . The energy of the first stationary state of \({\rm{L}}{{\rm{i}}^{{\rm{ + 2}}}}\) will be

1 \({\rm{21}}{\rm{.2 \times 1}}{{\rm{0}}^{{\rm{ - 18}}}}\,{\rm{J/atom}}\)
2 \({\rm{44}}{\rm{.10 \times 1}}{{\rm{0}}^{{\rm{ - 18}}}}\,{\rm{J/atom}}\)
3 \({\rm{63}}{\rm{.2 \times 1}}{{\rm{0}}^{{\rm{ - 18}}}}\,{\rm{J/atom}}\)
4 \({\rm{84}}{\rm{.2 \times 1}}{{\rm{0}}^{{\rm{ - 18}}}}\,{\rm{J/atom}}\)
CHXI02:STRUCTURE OF ATOM

307158 The energy of electron in first Bohr’s orbit of H-atom is –13.6 eV. What will be its potential energy in \({{\rm{4}}^{{\rm{th}}}}\) orbit ?

1 \({\rm{ - 13}}{\rm{.6}}\,{\rm{eV}}\)
2 \({\rm{ - 3}}{\rm{.4}}\,{\rm{eV}}\)
3 \({\rm{ - 0}}{\rm{.85}}\,{\rm{eV}}\)
4 \({\rm{ - 1}}{\rm{.70}}\,{\rm{eV}}\)
CHXI02:STRUCTURE OF ATOM

307160 If m and e are the mass and charge of the revolving electron in the orbit of radius r for hydrogen atom, the total energy of the revolving electron will be:

1 \(\frac{{\rm{1}}}{{\rm{2}}}\,\frac{{{{\rm{e}}^{\rm{2}}}}}{{\rm{r}}}\)
2 \({\rm{ - }}\,\,\frac{{{{\rm{e}}^{\rm{2}}}}}{{\rm{r}}}\)
3 \(\frac{{{\rm{m}}{{\rm{e}}^{\rm{2}}}}}{{\rm{r}}}\)
4 \({\rm{ - }}\frac{{\rm{1}}}{{\rm{2}}}\,\frac{{{{\rm{e}}^{\rm{2}}}}}{{\rm{r}}}\)
CHXI02:STRUCTURE OF ATOM

307131 According to Bohr’s atomic theory, the correct statement is

1 Potential energy of electron \({\rm{\alpha }}\frac{{{{\rm{Z}}^{\rm{2}}}}}{{{{\rm{n}}^{\rm{2}}}}}\)
2 The product of velocity of electron and principal quantum number (n) \({\rm{\alpha }}\;{{\rm{Z}}^{\rm{2}}}\)
3 Frequency of revolution of electron in an orbit \({\rm{\alpha }}\frac{{{{\rm{Z}}^{\rm{2}}}}}{{{{\rm{n}}^{\rm{3}}}}}\)
4 Coulombic force of attraction on the electron \({\rm{\alpha }}\frac{{{{\rm{Z}}^{\rm{2}}}}}{{{{\rm{n}}^{\rm{2}}}}}\)
CHXI02:STRUCTURE OF ATOM

307132 The amount of energy required to remove the electron from a \({\rm{L}}{{\rm{i}}^{{\rm{2 + }}}}\) ion in its ground state is how many times greater than the amount of energy needed to remove the electron from an H atom in its ground state?

1 \({\rm{2}}\)
2 \({\rm{9}}\)
3 \({\rm{4}}\)
4 \({\rm{6}}\)
CHXI02:STRUCTURE OF ATOM

307133 The ionisation energy of \({\rm{H}}{{\rm{e}}^{\rm{ + }}}\) is \({\rm{19}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{ - 18}}}}{\rm{J}}\,{\rm{ato}}{{\rm{m}}^{{\rm{ - 1}}}}\) . The energy of the first stationary state of \({\rm{L}}{{\rm{i}}^{{\rm{ + 2}}}}\) will be

1 \({\rm{21}}{\rm{.2 \times 1}}{{\rm{0}}^{{\rm{ - 18}}}}\,{\rm{J/atom}}\)
2 \({\rm{44}}{\rm{.10 \times 1}}{{\rm{0}}^{{\rm{ - 18}}}}\,{\rm{J/atom}}\)
3 \({\rm{63}}{\rm{.2 \times 1}}{{\rm{0}}^{{\rm{ - 18}}}}\,{\rm{J/atom}}\)
4 \({\rm{84}}{\rm{.2 \times 1}}{{\rm{0}}^{{\rm{ - 18}}}}\,{\rm{J/atom}}\)
CHXI02:STRUCTURE OF ATOM

307158 The energy of electron in first Bohr’s orbit of H-atom is –13.6 eV. What will be its potential energy in \({{\rm{4}}^{{\rm{th}}}}\) orbit ?

1 \({\rm{ - 13}}{\rm{.6}}\,{\rm{eV}}\)
2 \({\rm{ - 3}}{\rm{.4}}\,{\rm{eV}}\)
3 \({\rm{ - 0}}{\rm{.85}}\,{\rm{eV}}\)
4 \({\rm{ - 1}}{\rm{.70}}\,{\rm{eV}}\)
CHXI02:STRUCTURE OF ATOM

307160 If m and e are the mass and charge of the revolving electron in the orbit of radius r for hydrogen atom, the total energy of the revolving electron will be:

1 \(\frac{{\rm{1}}}{{\rm{2}}}\,\frac{{{{\rm{e}}^{\rm{2}}}}}{{\rm{r}}}\)
2 \({\rm{ - }}\,\,\frac{{{{\rm{e}}^{\rm{2}}}}}{{\rm{r}}}\)
3 \(\frac{{{\rm{m}}{{\rm{e}}^{\rm{2}}}}}{{\rm{r}}}\)
4 \({\rm{ - }}\frac{{\rm{1}}}{{\rm{2}}}\,\frac{{{{\rm{e}}^{\rm{2}}}}}{{\rm{r}}}\)
CHXI02:STRUCTURE OF ATOM

307131 According to Bohr’s atomic theory, the correct statement is

1 Potential energy of electron \({\rm{\alpha }}\frac{{{{\rm{Z}}^{\rm{2}}}}}{{{{\rm{n}}^{\rm{2}}}}}\)
2 The product of velocity of electron and principal quantum number (n) \({\rm{\alpha }}\;{{\rm{Z}}^{\rm{2}}}\)
3 Frequency of revolution of electron in an orbit \({\rm{\alpha }}\frac{{{{\rm{Z}}^{\rm{2}}}}}{{{{\rm{n}}^{\rm{3}}}}}\)
4 Coulombic force of attraction on the electron \({\rm{\alpha }}\frac{{{{\rm{Z}}^{\rm{2}}}}}{{{{\rm{n}}^{\rm{2}}}}}\)
CHXI02:STRUCTURE OF ATOM

307132 The amount of energy required to remove the electron from a \({\rm{L}}{{\rm{i}}^{{\rm{2 + }}}}\) ion in its ground state is how many times greater than the amount of energy needed to remove the electron from an H atom in its ground state?

1 \({\rm{2}}\)
2 \({\rm{9}}\)
3 \({\rm{4}}\)
4 \({\rm{6}}\)
CHXI02:STRUCTURE OF ATOM

307133 The ionisation energy of \({\rm{H}}{{\rm{e}}^{\rm{ + }}}\) is \({\rm{19}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{ - 18}}}}{\rm{J}}\,{\rm{ato}}{{\rm{m}}^{{\rm{ - 1}}}}\) . The energy of the first stationary state of \({\rm{L}}{{\rm{i}}^{{\rm{ + 2}}}}\) will be

1 \({\rm{21}}{\rm{.2 \times 1}}{{\rm{0}}^{{\rm{ - 18}}}}\,{\rm{J/atom}}\)
2 \({\rm{44}}{\rm{.10 \times 1}}{{\rm{0}}^{{\rm{ - 18}}}}\,{\rm{J/atom}}\)
3 \({\rm{63}}{\rm{.2 \times 1}}{{\rm{0}}^{{\rm{ - 18}}}}\,{\rm{J/atom}}\)
4 \({\rm{84}}{\rm{.2 \times 1}}{{\rm{0}}^{{\rm{ - 18}}}}\,{\rm{J/atom}}\)
CHXI02:STRUCTURE OF ATOM

307158 The energy of electron in first Bohr’s orbit of H-atom is –13.6 eV. What will be its potential energy in \({{\rm{4}}^{{\rm{th}}}}\) orbit ?

1 \({\rm{ - 13}}{\rm{.6}}\,{\rm{eV}}\)
2 \({\rm{ - 3}}{\rm{.4}}\,{\rm{eV}}\)
3 \({\rm{ - 0}}{\rm{.85}}\,{\rm{eV}}\)
4 \({\rm{ - 1}}{\rm{.70}}\,{\rm{eV}}\)
CHXI02:STRUCTURE OF ATOM

307160 If m and e are the mass and charge of the revolving electron in the orbit of radius r for hydrogen atom, the total energy of the revolving electron will be:

1 \(\frac{{\rm{1}}}{{\rm{2}}}\,\frac{{{{\rm{e}}^{\rm{2}}}}}{{\rm{r}}}\)
2 \({\rm{ - }}\,\,\frac{{{{\rm{e}}^{\rm{2}}}}}{{\rm{r}}}\)
3 \(\frac{{{\rm{m}}{{\rm{e}}^{\rm{2}}}}}{{\rm{r}}}\)
4 \({\rm{ - }}\frac{{\rm{1}}}{{\rm{2}}}\,\frac{{{{\rm{e}}^{\rm{2}}}}}{{\rm{r}}}\)
CHXI02:STRUCTURE OF ATOM

307131 According to Bohr’s atomic theory, the correct statement is

1 Potential energy of electron \({\rm{\alpha }}\frac{{{{\rm{Z}}^{\rm{2}}}}}{{{{\rm{n}}^{\rm{2}}}}}\)
2 The product of velocity of electron and principal quantum number (n) \({\rm{\alpha }}\;{{\rm{Z}}^{\rm{2}}}\)
3 Frequency of revolution of electron in an orbit \({\rm{\alpha }}\frac{{{{\rm{Z}}^{\rm{2}}}}}{{{{\rm{n}}^{\rm{3}}}}}\)
4 Coulombic force of attraction on the electron \({\rm{\alpha }}\frac{{{{\rm{Z}}^{\rm{2}}}}}{{{{\rm{n}}^{\rm{2}}}}}\)
CHXI02:STRUCTURE OF ATOM

307132 The amount of energy required to remove the electron from a \({\rm{L}}{{\rm{i}}^{{\rm{2 + }}}}\) ion in its ground state is how many times greater than the amount of energy needed to remove the electron from an H atom in its ground state?

1 \({\rm{2}}\)
2 \({\rm{9}}\)
3 \({\rm{4}}\)
4 \({\rm{6}}\)
CHXI02:STRUCTURE OF ATOM

307133 The ionisation energy of \({\rm{H}}{{\rm{e}}^{\rm{ + }}}\) is \({\rm{19}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{ - 18}}}}{\rm{J}}\,{\rm{ato}}{{\rm{m}}^{{\rm{ - 1}}}}\) . The energy of the first stationary state of \({\rm{L}}{{\rm{i}}^{{\rm{ + 2}}}}\) will be

1 \({\rm{21}}{\rm{.2 \times 1}}{{\rm{0}}^{{\rm{ - 18}}}}\,{\rm{J/atom}}\)
2 \({\rm{44}}{\rm{.10 \times 1}}{{\rm{0}}^{{\rm{ - 18}}}}\,{\rm{J/atom}}\)
3 \({\rm{63}}{\rm{.2 \times 1}}{{\rm{0}}^{{\rm{ - 18}}}}\,{\rm{J/atom}}\)
4 \({\rm{84}}{\rm{.2 \times 1}}{{\rm{0}}^{{\rm{ - 18}}}}\,{\rm{J/atom}}\)