306791 When burnt in air, 14.0 g mixture of carbon and sulphur gives a mixture of \({\rm{C}}{{\rm{O}}_{\rm{2}}}\) and \({\rm{S}}{{\rm{O}}_{\rm{2}}}\) in the volume ratio 2 : 1, volume being measured at the same conditions of temperature and pressure. Number of moles carbon in the mixture is
306793 The ratio of number of oxygen atoms (O) in 16.0 g ozone \({\rm{(}}{{\rm{O}}_{\rm{3}}}{\rm{)}}\), 28.0 g carbon monoxide \({\rm{(CO)}}\) and 16.0 oxygen \({\rm{(}}{{\rm{O}}_{\rm{2}}}{\rm{)}}\) is (Atomic mass; C = 12, O = 16 and Avogadro’s constant \({{\rm{N}}_{\rm{A}}}{\rm{ = 6}}{\rm{.023 \times 1}}{{\rm{0}}^{{\rm{23}}}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\))
306791 When burnt in air, 14.0 g mixture of carbon and sulphur gives a mixture of \({\rm{C}}{{\rm{O}}_{\rm{2}}}\) and \({\rm{S}}{{\rm{O}}_{\rm{2}}}\) in the volume ratio 2 : 1, volume being measured at the same conditions of temperature and pressure. Number of moles carbon in the mixture is
306793 The ratio of number of oxygen atoms (O) in 16.0 g ozone \({\rm{(}}{{\rm{O}}_{\rm{3}}}{\rm{)}}\), 28.0 g carbon monoxide \({\rm{(CO)}}\) and 16.0 oxygen \({\rm{(}}{{\rm{O}}_{\rm{2}}}{\rm{)}}\) is (Atomic mass; C = 12, O = 16 and Avogadro’s constant \({{\rm{N}}_{\rm{A}}}{\rm{ = 6}}{\rm{.023 \times 1}}{{\rm{0}}^{{\rm{23}}}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\))
306791 When burnt in air, 14.0 g mixture of carbon and sulphur gives a mixture of \({\rm{C}}{{\rm{O}}_{\rm{2}}}\) and \({\rm{S}}{{\rm{O}}_{\rm{2}}}\) in the volume ratio 2 : 1, volume being measured at the same conditions of temperature and pressure. Number of moles carbon in the mixture is
306793 The ratio of number of oxygen atoms (O) in 16.0 g ozone \({\rm{(}}{{\rm{O}}_{\rm{3}}}{\rm{)}}\), 28.0 g carbon monoxide \({\rm{(CO)}}\) and 16.0 oxygen \({\rm{(}}{{\rm{O}}_{\rm{2}}}{\rm{)}}\) is (Atomic mass; C = 12, O = 16 and Avogadro’s constant \({{\rm{N}}_{\rm{A}}}{\rm{ = 6}}{\rm{.023 \times 1}}{{\rm{0}}^{{\rm{23}}}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\))
306791 When burnt in air, 14.0 g mixture of carbon and sulphur gives a mixture of \({\rm{C}}{{\rm{O}}_{\rm{2}}}\) and \({\rm{S}}{{\rm{O}}_{\rm{2}}}\) in the volume ratio 2 : 1, volume being measured at the same conditions of temperature and pressure. Number of moles carbon in the mixture is
306793 The ratio of number of oxygen atoms (O) in 16.0 g ozone \({\rm{(}}{{\rm{O}}_{\rm{3}}}{\rm{)}}\), 28.0 g carbon monoxide \({\rm{(CO)}}\) and 16.0 oxygen \({\rm{(}}{{\rm{O}}_{\rm{2}}}{\rm{)}}\) is (Atomic mass; C = 12, O = 16 and Avogadro’s constant \({{\rm{N}}_{\rm{A}}}{\rm{ = 6}}{\rm{.023 \times 1}}{{\rm{0}}^{{\rm{23}}}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\))
306791 When burnt in air, 14.0 g mixture of carbon and sulphur gives a mixture of \({\rm{C}}{{\rm{O}}_{\rm{2}}}\) and \({\rm{S}}{{\rm{O}}_{\rm{2}}}\) in the volume ratio 2 : 1, volume being measured at the same conditions of temperature and pressure. Number of moles carbon in the mixture is
306793 The ratio of number of oxygen atoms (O) in 16.0 g ozone \({\rm{(}}{{\rm{O}}_{\rm{3}}}{\rm{)}}\), 28.0 g carbon monoxide \({\rm{(CO)}}\) and 16.0 oxygen \({\rm{(}}{{\rm{O}}_{\rm{2}}}{\rm{)}}\) is (Atomic mass; C = 12, O = 16 and Avogadro’s constant \({{\rm{N}}_{\rm{A}}}{\rm{ = 6}}{\rm{.023 \times 1}}{{\rm{0}}^{{\rm{23}}}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\))