Electric flux through a closed surface and Gauss’s Law
PHXII01:ELECTRIC CHARGES AND FIELDS

358316 \({{\rm{q}}_1},{q_2},{q_3}\,{\rm{and}}\,{q_4}\)are point charges located at points as shown in the figure and \(S\) is a spherical Gaussian surface of radius \(R\). Which of the following is true according to Gauss’s law?
supporting img

1 \(\oint {\left( {{{\vec E}_1} + {{\vec E}_2} + {{\vec E}_3}} \right).d\vec A = \frac{{{q_1} + {q_2} + {q_3}}}{{2{\varepsilon _0}}}} \)
2 \(\oint {\left( {{{\vec E}_1} + {{\vec E}_2} + {{\vec E}_3}} \right).d\vec A = \frac{{\left( {{q_1} + {q_2} + {q_3}} \right)}}{{{\varepsilon _0}}}} \)
3 \(\oint {\left( {{{\vec E}_1} + {{\vec E}_2} + {{\vec E}_3}} \right).d\vec A = \frac{{\left( {{q_1} + {q_2} + {q_3} + {q_4}} \right)}}{{{\varepsilon _0}}}} \)
4 \(\oint {\left( {{{\vec E}_1} + {{\vec E}_2} + {{\vec E}_3} + {{\overrightarrow E }_4}} \right).d\vec A = \frac{{\left( {{q_1} + {q_2} + {q_3}} \right)}}{{{\varepsilon _0}}}} \)
PHXII01:ELECTRIC CHARGES AND FIELDS

358317 A hollow cylinder has a charge \(q\) coulomb within it. If \(\phi \) is the electric flux associated with the curved surface \(B\), the flux linked with the plane surface \(A\) in units of volt-meter will be
supporting img

1 \(\frac{1}{2}\left( {\frac{q}{{{\varepsilon _0}}} - \phi } \right)\)
2 \(\frac{\phi }{3}\)
3 \(\frac{q}{{2{\varepsilon _0}}}\)
4 \(\frac{q}{{{\varepsilon _0}}} - \phi \)
PHXII01:ELECTRIC CHARGES AND FIELDS

358318 A point charge \( + Q\) is positioned at the centre of the base of a square pyramid as shown. The flux through one of the four identical upper faces of the pyramid is
supporting img

1 \(\frac{Q}{{16{\varepsilon _0}}}\)
2 \(\frac{Q}{{4{\varepsilon _0}}}\)
3 \(\frac{Q}{{8{\varepsilon _0}}}\)
4 None of these
PHXII01:ELECTRIC CHARGES AND FIELDS

358319 Electric flux emanating through a surface element \(d s=5 \hat{i}\) placed in an electric field \(E=4 \hat{i}+4 \hat{j}+4 \hat{k}\) is

1 10 units
2 20 units
3 4 units
4 16 units
PHXII01:ELECTRIC CHARGES AND FIELDS

358320 If the electric flux entering and leaving a closed surface are \(6 \times {10^6}\,{\rm{and}}\,9 \times {10^6}\) S.I. units respectively, then the charge inside the surface of permittivity of free space \({\varepsilon _0}\) is

1 \({\varepsilon _0} \times {10^6}\)
2 \( - {\varepsilon _0} \times {10^6}\)
3 \( - 2{\varepsilon _0} \times {10^6}\)
4 \(3{\varepsilon _0} \times {10^6}\)
PHXII01:ELECTRIC CHARGES AND FIELDS

358316 \({{\rm{q}}_1},{q_2},{q_3}\,{\rm{and}}\,{q_4}\)are point charges located at points as shown in the figure and \(S\) is a spherical Gaussian surface of radius \(R\). Which of the following is true according to Gauss’s law?
supporting img

1 \(\oint {\left( {{{\vec E}_1} + {{\vec E}_2} + {{\vec E}_3}} \right).d\vec A = \frac{{{q_1} + {q_2} + {q_3}}}{{2{\varepsilon _0}}}} \)
2 \(\oint {\left( {{{\vec E}_1} + {{\vec E}_2} + {{\vec E}_3}} \right).d\vec A = \frac{{\left( {{q_1} + {q_2} + {q_3}} \right)}}{{{\varepsilon _0}}}} \)
3 \(\oint {\left( {{{\vec E}_1} + {{\vec E}_2} + {{\vec E}_3}} \right).d\vec A = \frac{{\left( {{q_1} + {q_2} + {q_3} + {q_4}} \right)}}{{{\varepsilon _0}}}} \)
4 \(\oint {\left( {{{\vec E}_1} + {{\vec E}_2} + {{\vec E}_3} + {{\overrightarrow E }_4}} \right).d\vec A = \frac{{\left( {{q_1} + {q_2} + {q_3}} \right)}}{{{\varepsilon _0}}}} \)
PHXII01:ELECTRIC CHARGES AND FIELDS

358317 A hollow cylinder has a charge \(q\) coulomb within it. If \(\phi \) is the electric flux associated with the curved surface \(B\), the flux linked with the plane surface \(A\) in units of volt-meter will be
supporting img

1 \(\frac{1}{2}\left( {\frac{q}{{{\varepsilon _0}}} - \phi } \right)\)
2 \(\frac{\phi }{3}\)
3 \(\frac{q}{{2{\varepsilon _0}}}\)
4 \(\frac{q}{{{\varepsilon _0}}} - \phi \)
PHXII01:ELECTRIC CHARGES AND FIELDS

358318 A point charge \( + Q\) is positioned at the centre of the base of a square pyramid as shown. The flux through one of the four identical upper faces of the pyramid is
supporting img

1 \(\frac{Q}{{16{\varepsilon _0}}}\)
2 \(\frac{Q}{{4{\varepsilon _0}}}\)
3 \(\frac{Q}{{8{\varepsilon _0}}}\)
4 None of these
PHXII01:ELECTRIC CHARGES AND FIELDS

358319 Electric flux emanating through a surface element \(d s=5 \hat{i}\) placed in an electric field \(E=4 \hat{i}+4 \hat{j}+4 \hat{k}\) is

1 10 units
2 20 units
3 4 units
4 16 units
PHXII01:ELECTRIC CHARGES AND FIELDS

358320 If the electric flux entering and leaving a closed surface are \(6 \times {10^6}\,{\rm{and}}\,9 \times {10^6}\) S.I. units respectively, then the charge inside the surface of permittivity of free space \({\varepsilon _0}\) is

1 \({\varepsilon _0} \times {10^6}\)
2 \( - {\varepsilon _0} \times {10^6}\)
3 \( - 2{\varepsilon _0} \times {10^6}\)
4 \(3{\varepsilon _0} \times {10^6}\)
PHXII01:ELECTRIC CHARGES AND FIELDS

358316 \({{\rm{q}}_1},{q_2},{q_3}\,{\rm{and}}\,{q_4}\)are point charges located at points as shown in the figure and \(S\) is a spherical Gaussian surface of radius \(R\). Which of the following is true according to Gauss’s law?
supporting img

1 \(\oint {\left( {{{\vec E}_1} + {{\vec E}_2} + {{\vec E}_3}} \right).d\vec A = \frac{{{q_1} + {q_2} + {q_3}}}{{2{\varepsilon _0}}}} \)
2 \(\oint {\left( {{{\vec E}_1} + {{\vec E}_2} + {{\vec E}_3}} \right).d\vec A = \frac{{\left( {{q_1} + {q_2} + {q_3}} \right)}}{{{\varepsilon _0}}}} \)
3 \(\oint {\left( {{{\vec E}_1} + {{\vec E}_2} + {{\vec E}_3}} \right).d\vec A = \frac{{\left( {{q_1} + {q_2} + {q_3} + {q_4}} \right)}}{{{\varepsilon _0}}}} \)
4 \(\oint {\left( {{{\vec E}_1} + {{\vec E}_2} + {{\vec E}_3} + {{\overrightarrow E }_4}} \right).d\vec A = \frac{{\left( {{q_1} + {q_2} + {q_3}} \right)}}{{{\varepsilon _0}}}} \)
PHXII01:ELECTRIC CHARGES AND FIELDS

358317 A hollow cylinder has a charge \(q\) coulomb within it. If \(\phi \) is the electric flux associated with the curved surface \(B\), the flux linked with the plane surface \(A\) in units of volt-meter will be
supporting img

1 \(\frac{1}{2}\left( {\frac{q}{{{\varepsilon _0}}} - \phi } \right)\)
2 \(\frac{\phi }{3}\)
3 \(\frac{q}{{2{\varepsilon _0}}}\)
4 \(\frac{q}{{{\varepsilon _0}}} - \phi \)
PHXII01:ELECTRIC CHARGES AND FIELDS

358318 A point charge \( + Q\) is positioned at the centre of the base of a square pyramid as shown. The flux through one of the four identical upper faces of the pyramid is
supporting img

1 \(\frac{Q}{{16{\varepsilon _0}}}\)
2 \(\frac{Q}{{4{\varepsilon _0}}}\)
3 \(\frac{Q}{{8{\varepsilon _0}}}\)
4 None of these
PHXII01:ELECTRIC CHARGES AND FIELDS

358319 Electric flux emanating through a surface element \(d s=5 \hat{i}\) placed in an electric field \(E=4 \hat{i}+4 \hat{j}+4 \hat{k}\) is

1 10 units
2 20 units
3 4 units
4 16 units
PHXII01:ELECTRIC CHARGES AND FIELDS

358320 If the electric flux entering and leaving a closed surface are \(6 \times {10^6}\,{\rm{and}}\,9 \times {10^6}\) S.I. units respectively, then the charge inside the surface of permittivity of free space \({\varepsilon _0}\) is

1 \({\varepsilon _0} \times {10^6}\)
2 \( - {\varepsilon _0} \times {10^6}\)
3 \( - 2{\varepsilon _0} \times {10^6}\)
4 \(3{\varepsilon _0} \times {10^6}\)
PHXII01:ELECTRIC CHARGES AND FIELDS

358316 \({{\rm{q}}_1},{q_2},{q_3}\,{\rm{and}}\,{q_4}\)are point charges located at points as shown in the figure and \(S\) is a spherical Gaussian surface of radius \(R\). Which of the following is true according to Gauss’s law?
supporting img

1 \(\oint {\left( {{{\vec E}_1} + {{\vec E}_2} + {{\vec E}_3}} \right).d\vec A = \frac{{{q_1} + {q_2} + {q_3}}}{{2{\varepsilon _0}}}} \)
2 \(\oint {\left( {{{\vec E}_1} + {{\vec E}_2} + {{\vec E}_3}} \right).d\vec A = \frac{{\left( {{q_1} + {q_2} + {q_3}} \right)}}{{{\varepsilon _0}}}} \)
3 \(\oint {\left( {{{\vec E}_1} + {{\vec E}_2} + {{\vec E}_3}} \right).d\vec A = \frac{{\left( {{q_1} + {q_2} + {q_3} + {q_4}} \right)}}{{{\varepsilon _0}}}} \)
4 \(\oint {\left( {{{\vec E}_1} + {{\vec E}_2} + {{\vec E}_3} + {{\overrightarrow E }_4}} \right).d\vec A = \frac{{\left( {{q_1} + {q_2} + {q_3}} \right)}}{{{\varepsilon _0}}}} \)
PHXII01:ELECTRIC CHARGES AND FIELDS

358317 A hollow cylinder has a charge \(q\) coulomb within it. If \(\phi \) is the electric flux associated with the curved surface \(B\), the flux linked with the plane surface \(A\) in units of volt-meter will be
supporting img

1 \(\frac{1}{2}\left( {\frac{q}{{{\varepsilon _0}}} - \phi } \right)\)
2 \(\frac{\phi }{3}\)
3 \(\frac{q}{{2{\varepsilon _0}}}\)
4 \(\frac{q}{{{\varepsilon _0}}} - \phi \)
PHXII01:ELECTRIC CHARGES AND FIELDS

358318 A point charge \( + Q\) is positioned at the centre of the base of a square pyramid as shown. The flux through one of the four identical upper faces of the pyramid is
supporting img

1 \(\frac{Q}{{16{\varepsilon _0}}}\)
2 \(\frac{Q}{{4{\varepsilon _0}}}\)
3 \(\frac{Q}{{8{\varepsilon _0}}}\)
4 None of these
PHXII01:ELECTRIC CHARGES AND FIELDS

358319 Electric flux emanating through a surface element \(d s=5 \hat{i}\) placed in an electric field \(E=4 \hat{i}+4 \hat{j}+4 \hat{k}\) is

1 10 units
2 20 units
3 4 units
4 16 units
PHXII01:ELECTRIC CHARGES AND FIELDS

358320 If the electric flux entering and leaving a closed surface are \(6 \times {10^6}\,{\rm{and}}\,9 \times {10^6}\) S.I. units respectively, then the charge inside the surface of permittivity of free space \({\varepsilon _0}\) is

1 \({\varepsilon _0} \times {10^6}\)
2 \( - {\varepsilon _0} \times {10^6}\)
3 \( - 2{\varepsilon _0} \times {10^6}\)
4 \(3{\varepsilon _0} \times {10^6}\)
PHXII01:ELECTRIC CHARGES AND FIELDS

358316 \({{\rm{q}}_1},{q_2},{q_3}\,{\rm{and}}\,{q_4}\)are point charges located at points as shown in the figure and \(S\) is a spherical Gaussian surface of radius \(R\). Which of the following is true according to Gauss’s law?
supporting img

1 \(\oint {\left( {{{\vec E}_1} + {{\vec E}_2} + {{\vec E}_3}} \right).d\vec A = \frac{{{q_1} + {q_2} + {q_3}}}{{2{\varepsilon _0}}}} \)
2 \(\oint {\left( {{{\vec E}_1} + {{\vec E}_2} + {{\vec E}_3}} \right).d\vec A = \frac{{\left( {{q_1} + {q_2} + {q_3}} \right)}}{{{\varepsilon _0}}}} \)
3 \(\oint {\left( {{{\vec E}_1} + {{\vec E}_2} + {{\vec E}_3}} \right).d\vec A = \frac{{\left( {{q_1} + {q_2} + {q_3} + {q_4}} \right)}}{{{\varepsilon _0}}}} \)
4 \(\oint {\left( {{{\vec E}_1} + {{\vec E}_2} + {{\vec E}_3} + {{\overrightarrow E }_4}} \right).d\vec A = \frac{{\left( {{q_1} + {q_2} + {q_3}} \right)}}{{{\varepsilon _0}}}} \)
PHXII01:ELECTRIC CHARGES AND FIELDS

358317 A hollow cylinder has a charge \(q\) coulomb within it. If \(\phi \) is the electric flux associated with the curved surface \(B\), the flux linked with the plane surface \(A\) in units of volt-meter will be
supporting img

1 \(\frac{1}{2}\left( {\frac{q}{{{\varepsilon _0}}} - \phi } \right)\)
2 \(\frac{\phi }{3}\)
3 \(\frac{q}{{2{\varepsilon _0}}}\)
4 \(\frac{q}{{{\varepsilon _0}}} - \phi \)
PHXII01:ELECTRIC CHARGES AND FIELDS

358318 A point charge \( + Q\) is positioned at the centre of the base of a square pyramid as shown. The flux through one of the four identical upper faces of the pyramid is
supporting img

1 \(\frac{Q}{{16{\varepsilon _0}}}\)
2 \(\frac{Q}{{4{\varepsilon _0}}}\)
3 \(\frac{Q}{{8{\varepsilon _0}}}\)
4 None of these
PHXII01:ELECTRIC CHARGES AND FIELDS

358319 Electric flux emanating through a surface element \(d s=5 \hat{i}\) placed in an electric field \(E=4 \hat{i}+4 \hat{j}+4 \hat{k}\) is

1 10 units
2 20 units
3 4 units
4 16 units
PHXII01:ELECTRIC CHARGES AND FIELDS

358320 If the electric flux entering and leaving a closed surface are \(6 \times {10^6}\,{\rm{and}}\,9 \times {10^6}\) S.I. units respectively, then the charge inside the surface of permittivity of free space \({\varepsilon _0}\) is

1 \({\varepsilon _0} \times {10^6}\)
2 \( - {\varepsilon _0} \times {10^6}\)
3 \( - 2{\varepsilon _0} \times {10^6}\)
4 \(3{\varepsilon _0} \times {10^6}\)