Hydrogen Like Atom and its Line Spectra
PHXII12:ATOMS

356495 If the energy of hydrogen atom in \(n\) th orbit is \(E_{n}\), then energy in the \(n\)th orbit of a singly ionised helium atom will be

1 \(4 E_{n}\)
2 \(E_{n} / 4\)
3 \(2 E_{n}\)
4 \(E_{n} / 2\)
PHXII12:ATOMS

356496 A hydrogen atom and a \(L{i^{ + + }}\) ion are both in the second excited state. If \({L_H}\) and \({L_{Li}}\) are their respective electronic angular momenta, and \({E_H}\) and \({E_{Li}}\) are their respective energies, then

1 \({L_H} > {L_{Li}}\,{\rm{and}}\,\,\left| {{E_H}} \right| > \left| {{E_{Li}}} \right|\)
2 \({L_H} = {L_{Li}}\,{\rm{and}}\,\,\left| {{E_H}} \right| < \left| {{E_{Li}}} \right|\)
3 \({L_H} = {L_{Li}}\,{\rm{and}}\,\,\left| {{E_H}} \right| > \left| {{E_{Li}}} \right|\)
4 \({L_H} < {L_{Li}}\,{\rm{and}}\,\,\left| {{E_H}} \right| < \left| {{E_{Li}}} \right|\)
PHXII12:ATOMS

356497 In a hydrogen-like atom electron make transition from an energy level with quantum number \(n\) to another with quantum number \((n - 1)\). If \(n > > 1\), the frequency of radiation emitted is proportional to :

1 \(\frac{1}{n}\)
2 \(\frac{1}{{{n^2}}}\)
3 \(\frac{1}{{{n^{\frac{3}{2}}}}}\)
4 \(\frac{1}{{{n^3}}}\)
PHXII12:ATOMS

356498 The ionisation energy of an electron in the ground state of helium atom is \(24.6\,eV\). The energy required to remove both the elctron is

1 \(51.8\,eV\)
2 \(79\,eV\)
3 \(38.2\,eV\)
4 \(49.2\,eV\)
PHXII12:ATOMS

356499 The energy of \(H{e^ + }\) ion in its first excited state is, (The ground state energy for the Hydrogen atom is \( - 13.6\,eV\))

1 \( - 27.2\,eV\)
2 \( - 13.6\,eV\)
3 \( - 54.4\,eV\)
4 \( - 3.4\,eV\)
PHXII12:ATOMS

356495 If the energy of hydrogen atom in \(n\) th orbit is \(E_{n}\), then energy in the \(n\)th orbit of a singly ionised helium atom will be

1 \(4 E_{n}\)
2 \(E_{n} / 4\)
3 \(2 E_{n}\)
4 \(E_{n} / 2\)
PHXII12:ATOMS

356496 A hydrogen atom and a \(L{i^{ + + }}\) ion are both in the second excited state. If \({L_H}\) and \({L_{Li}}\) are their respective electronic angular momenta, and \({E_H}\) and \({E_{Li}}\) are their respective energies, then

1 \({L_H} > {L_{Li}}\,{\rm{and}}\,\,\left| {{E_H}} \right| > \left| {{E_{Li}}} \right|\)
2 \({L_H} = {L_{Li}}\,{\rm{and}}\,\,\left| {{E_H}} \right| < \left| {{E_{Li}}} \right|\)
3 \({L_H} = {L_{Li}}\,{\rm{and}}\,\,\left| {{E_H}} \right| > \left| {{E_{Li}}} \right|\)
4 \({L_H} < {L_{Li}}\,{\rm{and}}\,\,\left| {{E_H}} \right| < \left| {{E_{Li}}} \right|\)
PHXII12:ATOMS

356497 In a hydrogen-like atom electron make transition from an energy level with quantum number \(n\) to another with quantum number \((n - 1)\). If \(n > > 1\), the frequency of radiation emitted is proportional to :

1 \(\frac{1}{n}\)
2 \(\frac{1}{{{n^2}}}\)
3 \(\frac{1}{{{n^{\frac{3}{2}}}}}\)
4 \(\frac{1}{{{n^3}}}\)
PHXII12:ATOMS

356498 The ionisation energy of an electron in the ground state of helium atom is \(24.6\,eV\). The energy required to remove both the elctron is

1 \(51.8\,eV\)
2 \(79\,eV\)
3 \(38.2\,eV\)
4 \(49.2\,eV\)
PHXII12:ATOMS

356499 The energy of \(H{e^ + }\) ion in its first excited state is, (The ground state energy for the Hydrogen atom is \( - 13.6\,eV\))

1 \( - 27.2\,eV\)
2 \( - 13.6\,eV\)
3 \( - 54.4\,eV\)
4 \( - 3.4\,eV\)
PHXII12:ATOMS

356495 If the energy of hydrogen atom in \(n\) th orbit is \(E_{n}\), then energy in the \(n\)th orbit of a singly ionised helium atom will be

1 \(4 E_{n}\)
2 \(E_{n} / 4\)
3 \(2 E_{n}\)
4 \(E_{n} / 2\)
PHXII12:ATOMS

356496 A hydrogen atom and a \(L{i^{ + + }}\) ion are both in the second excited state. If \({L_H}\) and \({L_{Li}}\) are their respective electronic angular momenta, and \({E_H}\) and \({E_{Li}}\) are their respective energies, then

1 \({L_H} > {L_{Li}}\,{\rm{and}}\,\,\left| {{E_H}} \right| > \left| {{E_{Li}}} \right|\)
2 \({L_H} = {L_{Li}}\,{\rm{and}}\,\,\left| {{E_H}} \right| < \left| {{E_{Li}}} \right|\)
3 \({L_H} = {L_{Li}}\,{\rm{and}}\,\,\left| {{E_H}} \right| > \left| {{E_{Li}}} \right|\)
4 \({L_H} < {L_{Li}}\,{\rm{and}}\,\,\left| {{E_H}} \right| < \left| {{E_{Li}}} \right|\)
PHXII12:ATOMS

356497 In a hydrogen-like atom electron make transition from an energy level with quantum number \(n\) to another with quantum number \((n - 1)\). If \(n > > 1\), the frequency of radiation emitted is proportional to :

1 \(\frac{1}{n}\)
2 \(\frac{1}{{{n^2}}}\)
3 \(\frac{1}{{{n^{\frac{3}{2}}}}}\)
4 \(\frac{1}{{{n^3}}}\)
PHXII12:ATOMS

356498 The ionisation energy of an electron in the ground state of helium atom is \(24.6\,eV\). The energy required to remove both the elctron is

1 \(51.8\,eV\)
2 \(79\,eV\)
3 \(38.2\,eV\)
4 \(49.2\,eV\)
PHXII12:ATOMS

356499 The energy of \(H{e^ + }\) ion in its first excited state is, (The ground state energy for the Hydrogen atom is \( - 13.6\,eV\))

1 \( - 27.2\,eV\)
2 \( - 13.6\,eV\)
3 \( - 54.4\,eV\)
4 \( - 3.4\,eV\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
PHXII12:ATOMS

356495 If the energy of hydrogen atom in \(n\) th orbit is \(E_{n}\), then energy in the \(n\)th orbit of a singly ionised helium atom will be

1 \(4 E_{n}\)
2 \(E_{n} / 4\)
3 \(2 E_{n}\)
4 \(E_{n} / 2\)
PHXII12:ATOMS

356496 A hydrogen atom and a \(L{i^{ + + }}\) ion are both in the second excited state. If \({L_H}\) and \({L_{Li}}\) are their respective electronic angular momenta, and \({E_H}\) and \({E_{Li}}\) are their respective energies, then

1 \({L_H} > {L_{Li}}\,{\rm{and}}\,\,\left| {{E_H}} \right| > \left| {{E_{Li}}} \right|\)
2 \({L_H} = {L_{Li}}\,{\rm{and}}\,\,\left| {{E_H}} \right| < \left| {{E_{Li}}} \right|\)
3 \({L_H} = {L_{Li}}\,{\rm{and}}\,\,\left| {{E_H}} \right| > \left| {{E_{Li}}} \right|\)
4 \({L_H} < {L_{Li}}\,{\rm{and}}\,\,\left| {{E_H}} \right| < \left| {{E_{Li}}} \right|\)
PHXII12:ATOMS

356497 In a hydrogen-like atom electron make transition from an energy level with quantum number \(n\) to another with quantum number \((n - 1)\). If \(n > > 1\), the frequency of radiation emitted is proportional to :

1 \(\frac{1}{n}\)
2 \(\frac{1}{{{n^2}}}\)
3 \(\frac{1}{{{n^{\frac{3}{2}}}}}\)
4 \(\frac{1}{{{n^3}}}\)
PHXII12:ATOMS

356498 The ionisation energy of an electron in the ground state of helium atom is \(24.6\,eV\). The energy required to remove both the elctron is

1 \(51.8\,eV\)
2 \(79\,eV\)
3 \(38.2\,eV\)
4 \(49.2\,eV\)
PHXII12:ATOMS

356499 The energy of \(H{e^ + }\) ion in its first excited state is, (The ground state energy for the Hydrogen atom is \( - 13.6\,eV\))

1 \( - 27.2\,eV\)
2 \( - 13.6\,eV\)
3 \( - 54.4\,eV\)
4 \( - 3.4\,eV\)
PHXII12:ATOMS

356495 If the energy of hydrogen atom in \(n\) th orbit is \(E_{n}\), then energy in the \(n\)th orbit of a singly ionised helium atom will be

1 \(4 E_{n}\)
2 \(E_{n} / 4\)
3 \(2 E_{n}\)
4 \(E_{n} / 2\)
PHXII12:ATOMS

356496 A hydrogen atom and a \(L{i^{ + + }}\) ion are both in the second excited state. If \({L_H}\) and \({L_{Li}}\) are their respective electronic angular momenta, and \({E_H}\) and \({E_{Li}}\) are their respective energies, then

1 \({L_H} > {L_{Li}}\,{\rm{and}}\,\,\left| {{E_H}} \right| > \left| {{E_{Li}}} \right|\)
2 \({L_H} = {L_{Li}}\,{\rm{and}}\,\,\left| {{E_H}} \right| < \left| {{E_{Li}}} \right|\)
3 \({L_H} = {L_{Li}}\,{\rm{and}}\,\,\left| {{E_H}} \right| > \left| {{E_{Li}}} \right|\)
4 \({L_H} < {L_{Li}}\,{\rm{and}}\,\,\left| {{E_H}} \right| < \left| {{E_{Li}}} \right|\)
PHXII12:ATOMS

356497 In a hydrogen-like atom electron make transition from an energy level with quantum number \(n\) to another with quantum number \((n - 1)\). If \(n > > 1\), the frequency of radiation emitted is proportional to :

1 \(\frac{1}{n}\)
2 \(\frac{1}{{{n^2}}}\)
3 \(\frac{1}{{{n^{\frac{3}{2}}}}}\)
4 \(\frac{1}{{{n^3}}}\)
PHXII12:ATOMS

356498 The ionisation energy of an electron in the ground state of helium atom is \(24.6\,eV\). The energy required to remove both the elctron is

1 \(51.8\,eV\)
2 \(79\,eV\)
3 \(38.2\,eV\)
4 \(49.2\,eV\)
PHXII12:ATOMS

356499 The energy of \(H{e^ + }\) ion in its first excited state is, (The ground state energy for the Hydrogen atom is \( - 13.6\,eV\))

1 \( - 27.2\,eV\)
2 \( - 13.6\,eV\)
3 \( - 54.4\,eV\)
4 \( - 3.4\,eV\)