Explanation:
Given, angular momentum,
\(L = \frac{{nh}}{{2\pi }} = \frac{{3h}}{{2\pi }}\)
\(\therefore n = 3\)
Total energy of electron in \({n^{th}}\) orbit, is
\({E_T} = - \frac{{13.6}}{{{n^2}}}eV\)
\( \Rightarrow {E_T} = - \frac{{13.6}}{{{3^2}}}\,\,eV = - 1.51\,\,eV(\because n = 3)\)
Now, kinetic energy of electron in orbit is
\({E_K} = \left| {{E_T}} \right|\)
\(\therefore {E_k} = 1.51\,eV\)