Power in AC Circuits
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
PHXII07:ALTERNATING CURRENT

356158 In an \(LCR\) series circuit connected to an \(ac\) source, the supply voltage is
\(V = {V_0}\sin \left( {100\pi t + \frac{\pi }{6}} \right) \cdot {V_L} = 40V,\)
\({V_R} = 40V,\;Z = 5\Omega \;{\mathop{\rm and}\nolimits} R = 4\Omega \) Then match the column I and II.

Column IColumn II
A. Peak current (in A)P. \(10\sqrt 2 \)
B. \({V_0}\) (in volts)Q. \(50\sqrt 2 \)
C. \({X_L}({\mathop{\rm in}\nolimits} \,\Omega )\)R. \(4\)
D. \({X_C}({\mathop{\rm in}\nolimits} \,\Omega )\)S. \(1\)

supporting img

1 A - P, B - Q, C - R, D - S
2 A - Q, B - P, C - R, D - S
3 A - Q, B - R, C - P, D - S
4 A - S, B - R, C - Q, D - P
PHXII07:ALTERNATING CURRENT

356159 The power factor of \(LCR\) circuit at resonance is

1 \(0.5\)
2 \(0.707\)
3 \(1\)
4 \({\mathop{\rm Zero}\nolimits} \)
PHXII07:ALTERNATING CURRENT

356160 A bulb is connected first with \(dc\) and then \(ac\) of same voltage it will shine brightly with

1 Equally with both
2 \(AC\)
3 \(DC\)
4 Brightness will be in the ratio 1/1.4
PHXII07:ALTERNATING CURRENT

356161 An ac voltage given by \({V=70 \sin \left(100 \pi t+\dfrac{\pi}{4}\right) V}\) is connected across \({10 \Omega}\) resistor. The power consumed will be

1 \(490\,W\)
2 \(245\,W\)
3 \(350\,W\)
4 zero
PHXII07:ALTERNATING CURRENT

356158 In an \(LCR\) series circuit connected to an \(ac\) source, the supply voltage is
\(V = {V_0}\sin \left( {100\pi t + \frac{\pi }{6}} \right) \cdot {V_L} = 40V,\)
\({V_R} = 40V,\;Z = 5\Omega \;{\mathop{\rm and}\nolimits} R = 4\Omega \) Then match the column I and II.

Column IColumn II
A. Peak current (in A)P. \(10\sqrt 2 \)
B. \({V_0}\) (in volts)Q. \(50\sqrt 2 \)
C. \({X_L}({\mathop{\rm in}\nolimits} \,\Omega )\)R. \(4\)
D. \({X_C}({\mathop{\rm in}\nolimits} \,\Omega )\)S. \(1\)

supporting img

1 A - P, B - Q, C - R, D - S
2 A - Q, B - P, C - R, D - S
3 A - Q, B - R, C - P, D - S
4 A - S, B - R, C - Q, D - P
PHXII07:ALTERNATING CURRENT

356159 The power factor of \(LCR\) circuit at resonance is

1 \(0.5\)
2 \(0.707\)
3 \(1\)
4 \({\mathop{\rm Zero}\nolimits} \)
PHXII07:ALTERNATING CURRENT

356160 A bulb is connected first with \(dc\) and then \(ac\) of same voltage it will shine brightly with

1 Equally with both
2 \(AC\)
3 \(DC\)
4 Brightness will be in the ratio 1/1.4
PHXII07:ALTERNATING CURRENT

356161 An ac voltage given by \({V=70 \sin \left(100 \pi t+\dfrac{\pi}{4}\right) V}\) is connected across \({10 \Omega}\) resistor. The power consumed will be

1 \(490\,W\)
2 \(245\,W\)
3 \(350\,W\)
4 zero
PHXII07:ALTERNATING CURRENT

356158 In an \(LCR\) series circuit connected to an \(ac\) source, the supply voltage is
\(V = {V_0}\sin \left( {100\pi t + \frac{\pi }{6}} \right) \cdot {V_L} = 40V,\)
\({V_R} = 40V,\;Z = 5\Omega \;{\mathop{\rm and}\nolimits} R = 4\Omega \) Then match the column I and II.

Column IColumn II
A. Peak current (in A)P. \(10\sqrt 2 \)
B. \({V_0}\) (in volts)Q. \(50\sqrt 2 \)
C. \({X_L}({\mathop{\rm in}\nolimits} \,\Omega )\)R. \(4\)
D. \({X_C}({\mathop{\rm in}\nolimits} \,\Omega )\)S. \(1\)

supporting img

1 A - P, B - Q, C - R, D - S
2 A - Q, B - P, C - R, D - S
3 A - Q, B - R, C - P, D - S
4 A - S, B - R, C - Q, D - P
PHXII07:ALTERNATING CURRENT

356159 The power factor of \(LCR\) circuit at resonance is

1 \(0.5\)
2 \(0.707\)
3 \(1\)
4 \({\mathop{\rm Zero}\nolimits} \)
PHXII07:ALTERNATING CURRENT

356160 A bulb is connected first with \(dc\) and then \(ac\) of same voltage it will shine brightly with

1 Equally with both
2 \(AC\)
3 \(DC\)
4 Brightness will be in the ratio 1/1.4
PHXII07:ALTERNATING CURRENT

356161 An ac voltage given by \({V=70 \sin \left(100 \pi t+\dfrac{\pi}{4}\right) V}\) is connected across \({10 \Omega}\) resistor. The power consumed will be

1 \(490\,W\)
2 \(245\,W\)
3 \(350\,W\)
4 zero
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
PHXII07:ALTERNATING CURRENT

356158 In an \(LCR\) series circuit connected to an \(ac\) source, the supply voltage is
\(V = {V_0}\sin \left( {100\pi t + \frac{\pi }{6}} \right) \cdot {V_L} = 40V,\)
\({V_R} = 40V,\;Z = 5\Omega \;{\mathop{\rm and}\nolimits} R = 4\Omega \) Then match the column I and II.

Column IColumn II
A. Peak current (in A)P. \(10\sqrt 2 \)
B. \({V_0}\) (in volts)Q. \(50\sqrt 2 \)
C. \({X_L}({\mathop{\rm in}\nolimits} \,\Omega )\)R. \(4\)
D. \({X_C}({\mathop{\rm in}\nolimits} \,\Omega )\)S. \(1\)

supporting img

1 A - P, B - Q, C - R, D - S
2 A - Q, B - P, C - R, D - S
3 A - Q, B - R, C - P, D - S
4 A - S, B - R, C - Q, D - P
PHXII07:ALTERNATING CURRENT

356159 The power factor of \(LCR\) circuit at resonance is

1 \(0.5\)
2 \(0.707\)
3 \(1\)
4 \({\mathop{\rm Zero}\nolimits} \)
PHXII07:ALTERNATING CURRENT

356160 A bulb is connected first with \(dc\) and then \(ac\) of same voltage it will shine brightly with

1 Equally with both
2 \(AC\)
3 \(DC\)
4 Brightness will be in the ratio 1/1.4
PHXII07:ALTERNATING CURRENT

356161 An ac voltage given by \({V=70 \sin \left(100 \pi t+\dfrac{\pi}{4}\right) V}\) is connected across \({10 \Omega}\) resistor. The power consumed will be

1 \(490\,W\)
2 \(245\,W\)
3 \(350\,W\)
4 zero