296077
In \(\triangle\text{ABC}\), the bisector of ∠A intersects \(\bar{\text{BC}}\) at a point D. Then:
1 BD × AC = BC × AB
2 BD × AB = DC × AC
3 AC × AB = DC × BC
4 BD × AC = DC × AB
Explanation:
BD × AC = DC × AB
CONGRUENCE OF TRIANGLES
296078
Find the angle \(\angle\text{O}=?\)
1 40°
2 30°
3 60°
4 50°
Explanation:
30° \(30^\circ\text{ by }\triangle\text{MNO}\cong\triangle\text{PQO}\) \(\angle\text{MNO}\leftrightarrow\angle\text{POQ}\)
CONGRUENCE OF TRIANGLES
296079
Which is congruent side of AC =?
1 CQ
2 CP
3 PQ
4 AB
Explanation:
CP CP, both triangle \(\triangle\text{ABC}\) and \(\triangle\text{CPQ}\) are right \(\triangle\)angle triangle and \(\triangle\text{ABC}\cong\triangle\text{PQC}\) So, it means. AC = CP
CONGRUENCE OF TRIANGLES
296080
If the vertical angle of an isosceles triangle is 40°, then a measure of other two angles will be:
1 60º, 60º
2 80º, 80º
3 70º, 70º
4 45º, 45º
Explanation:
70º, 70º Let the base angles be 'x ' Therefore x + x + 40º = 180º 2x = 180º - 40º 2x = 140º x = 70º
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
CONGRUENCE OF TRIANGLES
296077
In \(\triangle\text{ABC}\), the bisector of ∠A intersects \(\bar{\text{BC}}\) at a point D. Then:
1 BD × AC = BC × AB
2 BD × AB = DC × AC
3 AC × AB = DC × BC
4 BD × AC = DC × AB
Explanation:
BD × AC = DC × AB
CONGRUENCE OF TRIANGLES
296078
Find the angle \(\angle\text{O}=?\)
1 40°
2 30°
3 60°
4 50°
Explanation:
30° \(30^\circ\text{ by }\triangle\text{MNO}\cong\triangle\text{PQO}\) \(\angle\text{MNO}\leftrightarrow\angle\text{POQ}\)
CONGRUENCE OF TRIANGLES
296079
Which is congruent side of AC =?
1 CQ
2 CP
3 PQ
4 AB
Explanation:
CP CP, both triangle \(\triangle\text{ABC}\) and \(\triangle\text{CPQ}\) are right \(\triangle\)angle triangle and \(\triangle\text{ABC}\cong\triangle\text{PQC}\) So, it means. AC = CP
CONGRUENCE OF TRIANGLES
296080
If the vertical angle of an isosceles triangle is 40°, then a measure of other two angles will be:
1 60º, 60º
2 80º, 80º
3 70º, 70º
4 45º, 45º
Explanation:
70º, 70º Let the base angles be 'x ' Therefore x + x + 40º = 180º 2x = 180º - 40º 2x = 140º x = 70º
296077
In \(\triangle\text{ABC}\), the bisector of ∠A intersects \(\bar{\text{BC}}\) at a point D. Then:
1 BD × AC = BC × AB
2 BD × AB = DC × AC
3 AC × AB = DC × BC
4 BD × AC = DC × AB
Explanation:
BD × AC = DC × AB
CONGRUENCE OF TRIANGLES
296078
Find the angle \(\angle\text{O}=?\)
1 40°
2 30°
3 60°
4 50°
Explanation:
30° \(30^\circ\text{ by }\triangle\text{MNO}\cong\triangle\text{PQO}\) \(\angle\text{MNO}\leftrightarrow\angle\text{POQ}\)
CONGRUENCE OF TRIANGLES
296079
Which is congruent side of AC =?
1 CQ
2 CP
3 PQ
4 AB
Explanation:
CP CP, both triangle \(\triangle\text{ABC}\) and \(\triangle\text{CPQ}\) are right \(\triangle\)angle triangle and \(\triangle\text{ABC}\cong\triangle\text{PQC}\) So, it means. AC = CP
CONGRUENCE OF TRIANGLES
296080
If the vertical angle of an isosceles triangle is 40°, then a measure of other two angles will be:
1 60º, 60º
2 80º, 80º
3 70º, 70º
4 45º, 45º
Explanation:
70º, 70º Let the base angles be 'x ' Therefore x + x + 40º = 180º 2x = 180º - 40º 2x = 140º x = 70º
296077
In \(\triangle\text{ABC}\), the bisector of ∠A intersects \(\bar{\text{BC}}\) at a point D. Then:
1 BD × AC = BC × AB
2 BD × AB = DC × AC
3 AC × AB = DC × BC
4 BD × AC = DC × AB
Explanation:
BD × AC = DC × AB
CONGRUENCE OF TRIANGLES
296078
Find the angle \(\angle\text{O}=?\)
1 40°
2 30°
3 60°
4 50°
Explanation:
30° \(30^\circ\text{ by }\triangle\text{MNO}\cong\triangle\text{PQO}\) \(\angle\text{MNO}\leftrightarrow\angle\text{POQ}\)
CONGRUENCE OF TRIANGLES
296079
Which is congruent side of AC =?
1 CQ
2 CP
3 PQ
4 AB
Explanation:
CP CP, both triangle \(\triangle\text{ABC}\) and \(\triangle\text{CPQ}\) are right \(\triangle\)angle triangle and \(\triangle\text{ABC}\cong\triangle\text{PQC}\) So, it means. AC = CP
CONGRUENCE OF TRIANGLES
296080
If the vertical angle of an isosceles triangle is 40°, then a measure of other two angles will be:
1 60º, 60º
2 80º, 80º
3 70º, 70º
4 45º, 45º
Explanation:
70º, 70º Let the base angles be 'x ' Therefore x + x + 40º = 180º 2x = 180º - 40º 2x = 140º x = 70º