295535
Which one of the following expression is a trinomial in three variables?
1 9y + 3 - Q
2 hs\(^{1}\) + 27ab\(^{1}\) - s\(^{1}\)
3 a\(^{1}\) - b\(^{1}\) - y\(^{1}\)
4 k\(^{1}\)+ y\(^{1}\) + 12
Explanation:
a\(^{1}\) - b\(^{1}\) - y\(^{1}\) An algebraic expression consisting of three terms is called a trinomial expression, is a trinomial. So, a\(^{1}\) - b\(^{1}\) - y\(^{1}\) is a trimonial in three variables a, b, y.
ALGEBAIC EXPRESSIONS
295536
How much is a\(^{1}\) - 3a greater than 2a\(^{1}\) + 4a?
1 a\(^{1}\) - 7a
2 a\(^{1}\) + 7a
3 -a\(^{1}\) - 7a
4 -a\(^{1}\) + 7a
Explanation:
-a\(^{1}\) - 7a Since, (a\(^{1}\) - 3a) - (2a\(^{1}\) + 4a) = a\(^{1}\) - 3a - 2a\(^{1}\) - 4a = - a\(^{1}\) -?7a So, a\(^{1}\) - 3a is greater than 2a\(^{1}\) + 4a by - a\(^{1}\) -?7a. Hence, the correct alternative is option (c).
ALGEBAIC EXPRESSIONS
295537
Find the coefficient of x\(^{1}\)in 7x\(^{1}\)+ 6x\(^{1}\)+ \(\frac{1}{2}{\text{x}}^3+\dfrac{1}{4}\) x\(^{1}\)+ x + 2
1 \(\frac{1}{2}\)
2 \(\frac{1}{4}\)
3 5
4 None of the above
Explanation:
\(\frac{1}{2}\) 7x\(^{1}\)+ 6x\(^{1}\)+ \(\frac{1}{2}{\text{x}}^3+\dfrac{1}{4}\) x\(^{1}\)+ x + 2 Coefficient of x\(^{1}\)\(^{1}\)
ALGEBAIC EXPRESSIONS
295538
Simplify: (4 - y) -2 (2y - 3)
1 6 - 2y
2 4 - 3y
3 8 - 4y
4 10 - 5y
Explanation:
10 - 5y -5y + 10 (or 10 - 5y): Do not forget to reverse the signs of every term in a subtracted expression (4 - y) -2 (2y - 3) = 4 - y - 4y + 6 = -5y+10 (or 10 - 5y)
295535
Which one of the following expression is a trinomial in three variables?
1 9y + 3 - Q
2 hs\(^{1}\) + 27ab\(^{1}\) - s\(^{1}\)
3 a\(^{1}\) - b\(^{1}\) - y\(^{1}\)
4 k\(^{1}\)+ y\(^{1}\) + 12
Explanation:
a\(^{1}\) - b\(^{1}\) - y\(^{1}\) An algebraic expression consisting of three terms is called a trinomial expression, is a trinomial. So, a\(^{1}\) - b\(^{1}\) - y\(^{1}\) is a trimonial in three variables a, b, y.
ALGEBAIC EXPRESSIONS
295536
How much is a\(^{1}\) - 3a greater than 2a\(^{1}\) + 4a?
1 a\(^{1}\) - 7a
2 a\(^{1}\) + 7a
3 -a\(^{1}\) - 7a
4 -a\(^{1}\) + 7a
Explanation:
-a\(^{1}\) - 7a Since, (a\(^{1}\) - 3a) - (2a\(^{1}\) + 4a) = a\(^{1}\) - 3a - 2a\(^{1}\) - 4a = - a\(^{1}\) -?7a So, a\(^{1}\) - 3a is greater than 2a\(^{1}\) + 4a by - a\(^{1}\) -?7a. Hence, the correct alternative is option (c).
ALGEBAIC EXPRESSIONS
295537
Find the coefficient of x\(^{1}\)in 7x\(^{1}\)+ 6x\(^{1}\)+ \(\frac{1}{2}{\text{x}}^3+\dfrac{1}{4}\) x\(^{1}\)+ x + 2
1 \(\frac{1}{2}\)
2 \(\frac{1}{4}\)
3 5
4 None of the above
Explanation:
\(\frac{1}{2}\) 7x\(^{1}\)+ 6x\(^{1}\)+ \(\frac{1}{2}{\text{x}}^3+\dfrac{1}{4}\) x\(^{1}\)+ x + 2 Coefficient of x\(^{1}\)\(^{1}\)
ALGEBAIC EXPRESSIONS
295538
Simplify: (4 - y) -2 (2y - 3)
1 6 - 2y
2 4 - 3y
3 8 - 4y
4 10 - 5y
Explanation:
10 - 5y -5y + 10 (or 10 - 5y): Do not forget to reverse the signs of every term in a subtracted expression (4 - y) -2 (2y - 3) = 4 - y - 4y + 6 = -5y+10 (or 10 - 5y)
295535
Which one of the following expression is a trinomial in three variables?
1 9y + 3 - Q
2 hs\(^{1}\) + 27ab\(^{1}\) - s\(^{1}\)
3 a\(^{1}\) - b\(^{1}\) - y\(^{1}\)
4 k\(^{1}\)+ y\(^{1}\) + 12
Explanation:
a\(^{1}\) - b\(^{1}\) - y\(^{1}\) An algebraic expression consisting of three terms is called a trinomial expression, is a trinomial. So, a\(^{1}\) - b\(^{1}\) - y\(^{1}\) is a trimonial in three variables a, b, y.
ALGEBAIC EXPRESSIONS
295536
How much is a\(^{1}\) - 3a greater than 2a\(^{1}\) + 4a?
1 a\(^{1}\) - 7a
2 a\(^{1}\) + 7a
3 -a\(^{1}\) - 7a
4 -a\(^{1}\) + 7a
Explanation:
-a\(^{1}\) - 7a Since, (a\(^{1}\) - 3a) - (2a\(^{1}\) + 4a) = a\(^{1}\) - 3a - 2a\(^{1}\) - 4a = - a\(^{1}\) -?7a So, a\(^{1}\) - 3a is greater than 2a\(^{1}\) + 4a by - a\(^{1}\) -?7a. Hence, the correct alternative is option (c).
ALGEBAIC EXPRESSIONS
295537
Find the coefficient of x\(^{1}\)in 7x\(^{1}\)+ 6x\(^{1}\)+ \(\frac{1}{2}{\text{x}}^3+\dfrac{1}{4}\) x\(^{1}\)+ x + 2
1 \(\frac{1}{2}\)
2 \(\frac{1}{4}\)
3 5
4 None of the above
Explanation:
\(\frac{1}{2}\) 7x\(^{1}\)+ 6x\(^{1}\)+ \(\frac{1}{2}{\text{x}}^3+\dfrac{1}{4}\) x\(^{1}\)+ x + 2 Coefficient of x\(^{1}\)\(^{1}\)
ALGEBAIC EXPRESSIONS
295538
Simplify: (4 - y) -2 (2y - 3)
1 6 - 2y
2 4 - 3y
3 8 - 4y
4 10 - 5y
Explanation:
10 - 5y -5y + 10 (or 10 - 5y): Do not forget to reverse the signs of every term in a subtracted expression (4 - y) -2 (2y - 3) = 4 - y - 4y + 6 = -5y+10 (or 10 - 5y)
295535
Which one of the following expression is a trinomial in three variables?
1 9y + 3 - Q
2 hs\(^{1}\) + 27ab\(^{1}\) - s\(^{1}\)
3 a\(^{1}\) - b\(^{1}\) - y\(^{1}\)
4 k\(^{1}\)+ y\(^{1}\) + 12
Explanation:
a\(^{1}\) - b\(^{1}\) - y\(^{1}\) An algebraic expression consisting of three terms is called a trinomial expression, is a trinomial. So, a\(^{1}\) - b\(^{1}\) - y\(^{1}\) is a trimonial in three variables a, b, y.
ALGEBAIC EXPRESSIONS
295536
How much is a\(^{1}\) - 3a greater than 2a\(^{1}\) + 4a?
1 a\(^{1}\) - 7a
2 a\(^{1}\) + 7a
3 -a\(^{1}\) - 7a
4 -a\(^{1}\) + 7a
Explanation:
-a\(^{1}\) - 7a Since, (a\(^{1}\) - 3a) - (2a\(^{1}\) + 4a) = a\(^{1}\) - 3a - 2a\(^{1}\) - 4a = - a\(^{1}\) -?7a So, a\(^{1}\) - 3a is greater than 2a\(^{1}\) + 4a by - a\(^{1}\) -?7a. Hence, the correct alternative is option (c).
ALGEBAIC EXPRESSIONS
295537
Find the coefficient of x\(^{1}\)in 7x\(^{1}\)+ 6x\(^{1}\)+ \(\frac{1}{2}{\text{x}}^3+\dfrac{1}{4}\) x\(^{1}\)+ x + 2
1 \(\frac{1}{2}\)
2 \(\frac{1}{4}\)
3 5
4 None of the above
Explanation:
\(\frac{1}{2}\) 7x\(^{1}\)+ 6x\(^{1}\)+ \(\frac{1}{2}{\text{x}}^3+\dfrac{1}{4}\) x\(^{1}\)+ x + 2 Coefficient of x\(^{1}\)\(^{1}\)
ALGEBAIC EXPRESSIONS
295538
Simplify: (4 - y) -2 (2y - 3)
1 6 - 2y
2 4 - 3y
3 8 - 4y
4 10 - 5y
Explanation:
10 - 5y -5y + 10 (or 10 - 5y): Do not forget to reverse the signs of every term in a subtracted expression (4 - y) -2 (2y - 3) = 4 - y - 4y + 6 = -5y+10 (or 10 - 5y)
295535
Which one of the following expression is a trinomial in three variables?
1 9y + 3 - Q
2 hs\(^{1}\) + 27ab\(^{1}\) - s\(^{1}\)
3 a\(^{1}\) - b\(^{1}\) - y\(^{1}\)
4 k\(^{1}\)+ y\(^{1}\) + 12
Explanation:
a\(^{1}\) - b\(^{1}\) - y\(^{1}\) An algebraic expression consisting of three terms is called a trinomial expression, is a trinomial. So, a\(^{1}\) - b\(^{1}\) - y\(^{1}\) is a trimonial in three variables a, b, y.
ALGEBAIC EXPRESSIONS
295536
How much is a\(^{1}\) - 3a greater than 2a\(^{1}\) + 4a?
1 a\(^{1}\) - 7a
2 a\(^{1}\) + 7a
3 -a\(^{1}\) - 7a
4 -a\(^{1}\) + 7a
Explanation:
-a\(^{1}\) - 7a Since, (a\(^{1}\) - 3a) - (2a\(^{1}\) + 4a) = a\(^{1}\) - 3a - 2a\(^{1}\) - 4a = - a\(^{1}\) -?7a So, a\(^{1}\) - 3a is greater than 2a\(^{1}\) + 4a by - a\(^{1}\) -?7a. Hence, the correct alternative is option (c).
ALGEBAIC EXPRESSIONS
295537
Find the coefficient of x\(^{1}\)in 7x\(^{1}\)+ 6x\(^{1}\)+ \(\frac{1}{2}{\text{x}}^3+\dfrac{1}{4}\) x\(^{1}\)+ x + 2
1 \(\frac{1}{2}\)
2 \(\frac{1}{4}\)
3 5
4 None of the above
Explanation:
\(\frac{1}{2}\) 7x\(^{1}\)+ 6x\(^{1}\)+ \(\frac{1}{2}{\text{x}}^3+\dfrac{1}{4}\) x\(^{1}\)+ x + 2 Coefficient of x\(^{1}\)\(^{1}\)
ALGEBAIC EXPRESSIONS
295538
Simplify: (4 - y) -2 (2y - 3)
1 6 - 2y
2 4 - 3y
3 8 - 4y
4 10 - 5y
Explanation:
10 - 5y -5y + 10 (or 10 - 5y): Do not forget to reverse the signs of every term in a subtracted expression (4 - y) -2 (2y - 3) = 4 - y - 4y + 6 = -5y+10 (or 10 - 5y)