295522
If a and b are respectively the sum and product of coefficients of terms in the expression x\(^{1}\) + y\(^{1}\) + z\(^{1}\) - xy - yz - zx, then a + 2b =
1 0
2 2
3 -2
4 -1
Explanation:
-2 We have, The expression x\(^{1}\) + y\(^{1}\) + z\(^{1}\) - xy - yz - zx, Terms Coefficients x\(^{1}\) 1 y\(^{1}\) 1 z\(^{1}\) 1 -xy -1 -yz -1 -zx -1 Sum, a 0 Product, b -1 So, a + 2b = 0 + 2(-1) = -2 Hence, the correct alternative is option (c).
ALGEBAIC EXPRESSIONS
295543
(a + 2b + 3c) - (4a + 6b - 5c) is equivalent to:
1 -4a - 8b − 2c
2 -4a - 4b + 8c
3 -3a + 8b - 2c
4 -3a - 4b - 2c
5 -3a - 4b + 8c
Explanation:
-3a - 4b + 8c The value of (a + 2b + 3c) - (4a + 6b - 5c) a + 2b + 3c - 4a - 6b + 5c -3a - 4b + 8c
295522
If a and b are respectively the sum and product of coefficients of terms in the expression x\(^{1}\) + y\(^{1}\) + z\(^{1}\) - xy - yz - zx, then a + 2b =
1 0
2 2
3 -2
4 -1
Explanation:
-2 We have, The expression x\(^{1}\) + y\(^{1}\) + z\(^{1}\) - xy - yz - zx, Terms Coefficients x\(^{1}\) 1 y\(^{1}\) 1 z\(^{1}\) 1 -xy -1 -yz -1 -zx -1 Sum, a 0 Product, b -1 So, a + 2b = 0 + 2(-1) = -2 Hence, the correct alternative is option (c).
ALGEBAIC EXPRESSIONS
295543
(a + 2b + 3c) - (4a + 6b - 5c) is equivalent to:
1 -4a - 8b − 2c
2 -4a - 4b + 8c
3 -3a + 8b - 2c
4 -3a - 4b - 2c
5 -3a - 4b + 8c
Explanation:
-3a - 4b + 8c The value of (a + 2b + 3c) - (4a + 6b - 5c) a + 2b + 3c - 4a - 6b + 5c -3a - 4b + 8c
295522
If a and b are respectively the sum and product of coefficients of terms in the expression x\(^{1}\) + y\(^{1}\) + z\(^{1}\) - xy - yz - zx, then a + 2b =
1 0
2 2
3 -2
4 -1
Explanation:
-2 We have, The expression x\(^{1}\) + y\(^{1}\) + z\(^{1}\) - xy - yz - zx, Terms Coefficients x\(^{1}\) 1 y\(^{1}\) 1 z\(^{1}\) 1 -xy -1 -yz -1 -zx -1 Sum, a 0 Product, b -1 So, a + 2b = 0 + 2(-1) = -2 Hence, the correct alternative is option (c).
ALGEBAIC EXPRESSIONS
295543
(a + 2b + 3c) - (4a + 6b - 5c) is equivalent to:
1 -4a - 8b − 2c
2 -4a - 4b + 8c
3 -3a + 8b - 2c
4 -3a - 4b - 2c
5 -3a - 4b + 8c
Explanation:
-3a - 4b + 8c The value of (a + 2b + 3c) - (4a + 6b - 5c) a + 2b + 3c - 4a - 6b + 5c -3a - 4b + 8c
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
ALGEBAIC EXPRESSIONS
295522
If a and b are respectively the sum and product of coefficients of terms in the expression x\(^{1}\) + y\(^{1}\) + z\(^{1}\) - xy - yz - zx, then a + 2b =
1 0
2 2
3 -2
4 -1
Explanation:
-2 We have, The expression x\(^{1}\) + y\(^{1}\) + z\(^{1}\) - xy - yz - zx, Terms Coefficients x\(^{1}\) 1 y\(^{1}\) 1 z\(^{1}\) 1 -xy -1 -yz -1 -zx -1 Sum, a 0 Product, b -1 So, a + 2b = 0 + 2(-1) = -2 Hence, the correct alternative is option (c).
ALGEBAIC EXPRESSIONS
295543
(a + 2b + 3c) - (4a + 6b - 5c) is equivalent to:
1 -4a - 8b − 2c
2 -4a - 4b + 8c
3 -3a + 8b - 2c
4 -3a - 4b - 2c
5 -3a - 4b + 8c
Explanation:
-3a - 4b + 8c The value of (a + 2b + 3c) - (4a + 6b - 5c) a + 2b + 3c - 4a - 6b + 5c -3a - 4b + 8c
295522
If a and b are respectively the sum and product of coefficients of terms in the expression x\(^{1}\) + y\(^{1}\) + z\(^{1}\) - xy - yz - zx, then a + 2b =
1 0
2 2
3 -2
4 -1
Explanation:
-2 We have, The expression x\(^{1}\) + y\(^{1}\) + z\(^{1}\) - xy - yz - zx, Terms Coefficients x\(^{1}\) 1 y\(^{1}\) 1 z\(^{1}\) 1 -xy -1 -yz -1 -zx -1 Sum, a 0 Product, b -1 So, a + 2b = 0 + 2(-1) = -2 Hence, the correct alternative is option (c).
ALGEBAIC EXPRESSIONS
295543
(a + 2b + 3c) - (4a + 6b - 5c) is equivalent to:
1 -4a - 8b − 2c
2 -4a - 4b + 8c
3 -3a + 8b - 2c
4 -3a - 4b - 2c
5 -3a - 4b + 8c
Explanation:
-3a - 4b + 8c The value of (a + 2b + 3c) - (4a + 6b - 5c) a + 2b + 3c - 4a - 6b + 5c -3a - 4b + 8c