06. THERMODYNAMICS[KARNATAKA CET EXCLUSIVE]
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHEMISTRY(KCET)

285274 When the same quantity of heat is absorbed by a system at two different temperatures\(T_1\) and \(T_2\) such that \(T_1>T_2\), change in entropies are \(\Delta S_1\) and \(\Delta S_2\) respectively. Then

1 \(\Delta S_1=\Delta S_2\)
2 \(S_2>S_1\)
3 \(\Delta S_2<\Delta S_1\)
4 \(\Delta S_1<\Delta S_2\)
CHEMISTRY(KCET)

285275 The reaction in which\(\Delta H>\Delta U\) is

1 \(\mathrm{N}_2(\mathrm{~g})+\mathrm{O}_2(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})\)
2 \(\mathrm{CaCO}_3\) (s) \(\rightarrow \mathrm{CaO}\) (s) \(+\mathrm{CO}_2\) (g)
3 \(\mathrm{N}_2(\mathrm{~g})+3 \mathrm{H}_2(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_3(\mathrm{~g})\)
4 \(\mathrm{CH}_4(\mathrm{~g})+2 \mathrm{O}_2(\mathrm{~g}) \rightarrow \mathrm{CO}_2(\mathrm{~g})+2 \mathrm{H}_2 \mathrm{O}\) (l)
CHEMISTRY(KCET)

285279 In the reaction,

\(\mathrm{S}+\frac{3}{2} \mathrm{O}_2 \rightarrow \mathrm{SO}_3+2 \mathrm{x} \mathrm{kJ}\) and
\(\mathrm{SO}_2+\frac{1}{2} \mathrm{O}_2 \rightarrow \mathrm{SO}_3+\mathrm{y} \mathrm{kJ}\)
Heat of formation of \(\mathrm{SO}_2\) is,

1 \(x-y\)
2 \(2 \mathrm{x}+\mathrm{y}\)
3 \(\mathrm{x}+\mathrm{y}\)
4 \(2 \mathrm{x}-\mathrm{y}\)
CHEMISTRY(KCET)

285280 The ratio of heats liberated at 298 K from the combustion of one kg of coke and by burning water gas obtained from kg of coke is

(Assume coke to be \(100 \%\) carbon)
(Given : Enthalpies of combustion of \(\mathrm{CO}_2, \mathrm{CO}\) and \(\mathrm{H}_2\) as \(393.5 \mathrm{~kJ}, 285 \mathrm{~kJ}, 285 \mathrm{~kJ}\) respectively all at 298 K ).

1 \(0.79: 1\)
2 \(0.86: 1\)
3 \(0.69: 1\)
4 \(0.96: 1\)
CHEMISTRY(KCET)

285274 When the same quantity of heat is absorbed by a system at two different temperatures\(T_1\) and \(T_2\) such that \(T_1>T_2\), change in entropies are \(\Delta S_1\) and \(\Delta S_2\) respectively. Then

1 \(\Delta S_1=\Delta S_2\)
2 \(S_2>S_1\)
3 \(\Delta S_2<\Delta S_1\)
4 \(\Delta S_1<\Delta S_2\)
CHEMISTRY(KCET)

285275 The reaction in which\(\Delta H>\Delta U\) is

1 \(\mathrm{N}_2(\mathrm{~g})+\mathrm{O}_2(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})\)
2 \(\mathrm{CaCO}_3\) (s) \(\rightarrow \mathrm{CaO}\) (s) \(+\mathrm{CO}_2\) (g)
3 \(\mathrm{N}_2(\mathrm{~g})+3 \mathrm{H}_2(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_3(\mathrm{~g})\)
4 \(\mathrm{CH}_4(\mathrm{~g})+2 \mathrm{O}_2(\mathrm{~g}) \rightarrow \mathrm{CO}_2(\mathrm{~g})+2 \mathrm{H}_2 \mathrm{O}\) (l)
CHEMISTRY(KCET)

285279 In the reaction,

\(\mathrm{S}+\frac{3}{2} \mathrm{O}_2 \rightarrow \mathrm{SO}_3+2 \mathrm{x} \mathrm{kJ}\) and
\(\mathrm{SO}_2+\frac{1}{2} \mathrm{O}_2 \rightarrow \mathrm{SO}_3+\mathrm{y} \mathrm{kJ}\)
Heat of formation of \(\mathrm{SO}_2\) is,

1 \(x-y\)
2 \(2 \mathrm{x}+\mathrm{y}\)
3 \(\mathrm{x}+\mathrm{y}\)
4 \(2 \mathrm{x}-\mathrm{y}\)
CHEMISTRY(KCET)

285280 The ratio of heats liberated at 298 K from the combustion of one kg of coke and by burning water gas obtained from kg of coke is

(Assume coke to be \(100 \%\) carbon)
(Given : Enthalpies of combustion of \(\mathrm{CO}_2, \mathrm{CO}\) and \(\mathrm{H}_2\) as \(393.5 \mathrm{~kJ}, 285 \mathrm{~kJ}, 285 \mathrm{~kJ}\) respectively all at 298 K ).

1 \(0.79: 1\)
2 \(0.86: 1\)
3 \(0.69: 1\)
4 \(0.96: 1\)
CHEMISTRY(KCET)

285274 When the same quantity of heat is absorbed by a system at two different temperatures\(T_1\) and \(T_2\) such that \(T_1>T_2\), change in entropies are \(\Delta S_1\) and \(\Delta S_2\) respectively. Then

1 \(\Delta S_1=\Delta S_2\)
2 \(S_2>S_1\)
3 \(\Delta S_2<\Delta S_1\)
4 \(\Delta S_1<\Delta S_2\)
CHEMISTRY(KCET)

285275 The reaction in which\(\Delta H>\Delta U\) is

1 \(\mathrm{N}_2(\mathrm{~g})+\mathrm{O}_2(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})\)
2 \(\mathrm{CaCO}_3\) (s) \(\rightarrow \mathrm{CaO}\) (s) \(+\mathrm{CO}_2\) (g)
3 \(\mathrm{N}_2(\mathrm{~g})+3 \mathrm{H}_2(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_3(\mathrm{~g})\)
4 \(\mathrm{CH}_4(\mathrm{~g})+2 \mathrm{O}_2(\mathrm{~g}) \rightarrow \mathrm{CO}_2(\mathrm{~g})+2 \mathrm{H}_2 \mathrm{O}\) (l)
CHEMISTRY(KCET)

285279 In the reaction,

\(\mathrm{S}+\frac{3}{2} \mathrm{O}_2 \rightarrow \mathrm{SO}_3+2 \mathrm{x} \mathrm{kJ}\) and
\(\mathrm{SO}_2+\frac{1}{2} \mathrm{O}_2 \rightarrow \mathrm{SO}_3+\mathrm{y} \mathrm{kJ}\)
Heat of formation of \(\mathrm{SO}_2\) is,

1 \(x-y\)
2 \(2 \mathrm{x}+\mathrm{y}\)
3 \(\mathrm{x}+\mathrm{y}\)
4 \(2 \mathrm{x}-\mathrm{y}\)
CHEMISTRY(KCET)

285280 The ratio of heats liberated at 298 K from the combustion of one kg of coke and by burning water gas obtained from kg of coke is

(Assume coke to be \(100 \%\) carbon)
(Given : Enthalpies of combustion of \(\mathrm{CO}_2, \mathrm{CO}\) and \(\mathrm{H}_2\) as \(393.5 \mathrm{~kJ}, 285 \mathrm{~kJ}, 285 \mathrm{~kJ}\) respectively all at 298 K ).

1 \(0.79: 1\)
2 \(0.86: 1\)
3 \(0.69: 1\)
4 \(0.96: 1\)
CHEMISTRY(KCET)

285274 When the same quantity of heat is absorbed by a system at two different temperatures\(T_1\) and \(T_2\) such that \(T_1>T_2\), change in entropies are \(\Delta S_1\) and \(\Delta S_2\) respectively. Then

1 \(\Delta S_1=\Delta S_2\)
2 \(S_2>S_1\)
3 \(\Delta S_2<\Delta S_1\)
4 \(\Delta S_1<\Delta S_2\)
CHEMISTRY(KCET)

285275 The reaction in which\(\Delta H>\Delta U\) is

1 \(\mathrm{N}_2(\mathrm{~g})+\mathrm{O}_2(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})\)
2 \(\mathrm{CaCO}_3\) (s) \(\rightarrow \mathrm{CaO}\) (s) \(+\mathrm{CO}_2\) (g)
3 \(\mathrm{N}_2(\mathrm{~g})+3 \mathrm{H}_2(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_3(\mathrm{~g})\)
4 \(\mathrm{CH}_4(\mathrm{~g})+2 \mathrm{O}_2(\mathrm{~g}) \rightarrow \mathrm{CO}_2(\mathrm{~g})+2 \mathrm{H}_2 \mathrm{O}\) (l)
CHEMISTRY(KCET)

285279 In the reaction,

\(\mathrm{S}+\frac{3}{2} \mathrm{O}_2 \rightarrow \mathrm{SO}_3+2 \mathrm{x} \mathrm{kJ}\) and
\(\mathrm{SO}_2+\frac{1}{2} \mathrm{O}_2 \rightarrow \mathrm{SO}_3+\mathrm{y} \mathrm{kJ}\)
Heat of formation of \(\mathrm{SO}_2\) is,

1 \(x-y\)
2 \(2 \mathrm{x}+\mathrm{y}\)
3 \(\mathrm{x}+\mathrm{y}\)
4 \(2 \mathrm{x}-\mathrm{y}\)
CHEMISTRY(KCET)

285280 The ratio of heats liberated at 298 K from the combustion of one kg of coke and by burning water gas obtained from kg of coke is

(Assume coke to be \(100 \%\) carbon)
(Given : Enthalpies of combustion of \(\mathrm{CO}_2, \mathrm{CO}\) and \(\mathrm{H}_2\) as \(393.5 \mathrm{~kJ}, 285 \mathrm{~kJ}, 285 \mathrm{~kJ}\) respectively all at 298 K ).

1 \(0.79: 1\)
2 \(0.86: 1\)
3 \(0.69: 1\)
4 \(0.96: 1\)