283394
Four light sources produce the following four waves:
(i) \(\mathrm{y}_1=\mathrm{a} \sin \left(\omega \mathrm{t}+\phi_1\right)\)
(ii) \(y_2=a \sin 2 \omega t\)
(iii) \(\mathbf{y}_3=\mathbf{a} \sin \left(\omega t+\phi_2\right)\)
(iv) \(\mathbf{y}_4=a \sin (3 \omega t+\phi)\)
Superposition of which two waves give rise to interference?
283394
Four light sources produce the following four waves:
(i) \(\mathrm{y}_1=\mathrm{a} \sin \left(\omega \mathrm{t}+\phi_1\right)\)
(ii) \(y_2=a \sin 2 \omega t\)
(iii) \(\mathbf{y}_3=\mathbf{a} \sin \left(\omega t+\phi_2\right)\)
(iv) \(\mathbf{y}_4=a \sin (3 \omega t+\phi)\)
Superposition of which two waves give rise to interference?
283394
Four light sources produce the following four waves:
(i) \(\mathrm{y}_1=\mathrm{a} \sin \left(\omega \mathrm{t}+\phi_1\right)\)
(ii) \(y_2=a \sin 2 \omega t\)
(iii) \(\mathbf{y}_3=\mathbf{a} \sin \left(\omega t+\phi_2\right)\)
(iv) \(\mathbf{y}_4=a \sin (3 \omega t+\phi)\)
Superposition of which two waves give rise to interference?
283394
Four light sources produce the following four waves:
(i) \(\mathrm{y}_1=\mathrm{a} \sin \left(\omega \mathrm{t}+\phi_1\right)\)
(ii) \(y_2=a \sin 2 \omega t\)
(iii) \(\mathbf{y}_3=\mathbf{a} \sin \left(\omega t+\phi_2\right)\)
(iv) \(\mathbf{y}_4=a \sin (3 \omega t+\phi)\)
Superposition of which two waves give rise to interference?