06. AC VOLTAGE APPLIED TO A SERIES LCR CIRCUIT
AC (NCERT)

274649 Resonance frequency of LCR series a.c. circuit is ${{f}_{0}}$. Now the capacitance is made 4 times, then the new resonance frequency will become

1 ${{\text{f}}_{0}}/4$
2 $2{{\text{f}}_{0}}$
3 ${{\text{f}}_{0}}$
4 ${{\text{f}}_{0}}/2$
AC (NCERT)

274650 In an LCR series a.c. circuit, the voltage across each of the components, $\text{L},\text{C}$ and $\text{R}$ is $50\text{V}$. The voltage across the $\text{LC}$ combination will be

1 $100\text{V}$
2 $50\sqrt{2}\text{V}$
3 $50\text{V}$
4 $0\text{V}$
AC (NCERT)

274651 If resistance of $100\text{ }\!\!\Omega\!\!\text{ }$, and inductance of 0.5 henry and capacitance of $10\times {{10}^{6}}$ farad are connected in series through $50\text{Hz}$ A.C. supply, then impedance is

1 $1.8765\text{ }\!\!\Omega\!\!\text{ }$
2 $18.76\text{ }\!\!\Omega\!\!\text{ }$
3 $187.6\text{ }\!\!\Omega\!\!\text{ }$
4 $101.3\text{ }\!\!\Omega\!\!\text{ }$
AC (NCERT)

274652 The current in resistance $R$ at resonance is

1 zero
2 minimum but finite
3 maximum but finite
4 infinite
AC (NCERT)

274654 For a series $RLC$ circuit $R={{X}_{L}}=2{{X}_{C}}$. The impedance of the circuit and phase difference between $V$ and $I$ respectively will be

1 $\frac{\sqrt{5}R}{2},\text{ta}{{\text{n}}^{-1}}\left( 2 \right)$
2 $\frac{\sqrt{5}R}{2},\text{ta}{{\text{n}}^{-1}}\left( 1/2 \right)$
3 $\sqrt{5}{{\text{X}}_{\text{C}}},\text{ta}{{\text{n}}^{-1}}\left( 2 \right)$
4 $\sqrt{5}\text{R},\text{ta}{{\text{n}}^{-1}}\left( 1/2 \right)$
AC (NCERT)

274649 Resonance frequency of LCR series a.c. circuit is ${{f}_{0}}$. Now the capacitance is made 4 times, then the new resonance frequency will become

1 ${{\text{f}}_{0}}/4$
2 $2{{\text{f}}_{0}}$
3 ${{\text{f}}_{0}}$
4 ${{\text{f}}_{0}}/2$
AC (NCERT)

274650 In an LCR series a.c. circuit, the voltage across each of the components, $\text{L},\text{C}$ and $\text{R}$ is $50\text{V}$. The voltage across the $\text{LC}$ combination will be

1 $100\text{V}$
2 $50\sqrt{2}\text{V}$
3 $50\text{V}$
4 $0\text{V}$
AC (NCERT)

274651 If resistance of $100\text{ }\!\!\Omega\!\!\text{ }$, and inductance of 0.5 henry and capacitance of $10\times {{10}^{6}}$ farad are connected in series through $50\text{Hz}$ A.C. supply, then impedance is

1 $1.8765\text{ }\!\!\Omega\!\!\text{ }$
2 $18.76\text{ }\!\!\Omega\!\!\text{ }$
3 $187.6\text{ }\!\!\Omega\!\!\text{ }$
4 $101.3\text{ }\!\!\Omega\!\!\text{ }$
AC (NCERT)

274652 The current in resistance $R$ at resonance is

1 zero
2 minimum but finite
3 maximum but finite
4 infinite
AC (NCERT)

274654 For a series $RLC$ circuit $R={{X}_{L}}=2{{X}_{C}}$. The impedance of the circuit and phase difference between $V$ and $I$ respectively will be

1 $\frac{\sqrt{5}R}{2},\text{ta}{{\text{n}}^{-1}}\left( 2 \right)$
2 $\frac{\sqrt{5}R}{2},\text{ta}{{\text{n}}^{-1}}\left( 1/2 \right)$
3 $\sqrt{5}{{\text{X}}_{\text{C}}},\text{ta}{{\text{n}}^{-1}}\left( 2 \right)$
4 $\sqrt{5}\text{R},\text{ta}{{\text{n}}^{-1}}\left( 1/2 \right)$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
AC (NCERT)

274649 Resonance frequency of LCR series a.c. circuit is ${{f}_{0}}$. Now the capacitance is made 4 times, then the new resonance frequency will become

1 ${{\text{f}}_{0}}/4$
2 $2{{\text{f}}_{0}}$
3 ${{\text{f}}_{0}}$
4 ${{\text{f}}_{0}}/2$
AC (NCERT)

274650 In an LCR series a.c. circuit, the voltage across each of the components, $\text{L},\text{C}$ and $\text{R}$ is $50\text{V}$. The voltage across the $\text{LC}$ combination will be

1 $100\text{V}$
2 $50\sqrt{2}\text{V}$
3 $50\text{V}$
4 $0\text{V}$
AC (NCERT)

274651 If resistance of $100\text{ }\!\!\Omega\!\!\text{ }$, and inductance of 0.5 henry and capacitance of $10\times {{10}^{6}}$ farad are connected in series through $50\text{Hz}$ A.C. supply, then impedance is

1 $1.8765\text{ }\!\!\Omega\!\!\text{ }$
2 $18.76\text{ }\!\!\Omega\!\!\text{ }$
3 $187.6\text{ }\!\!\Omega\!\!\text{ }$
4 $101.3\text{ }\!\!\Omega\!\!\text{ }$
AC (NCERT)

274652 The current in resistance $R$ at resonance is

1 zero
2 minimum but finite
3 maximum but finite
4 infinite
AC (NCERT)

274654 For a series $RLC$ circuit $R={{X}_{L}}=2{{X}_{C}}$. The impedance of the circuit and phase difference between $V$ and $I$ respectively will be

1 $\frac{\sqrt{5}R}{2},\text{ta}{{\text{n}}^{-1}}\left( 2 \right)$
2 $\frac{\sqrt{5}R}{2},\text{ta}{{\text{n}}^{-1}}\left( 1/2 \right)$
3 $\sqrt{5}{{\text{X}}_{\text{C}}},\text{ta}{{\text{n}}^{-1}}\left( 2 \right)$
4 $\sqrt{5}\text{R},\text{ta}{{\text{n}}^{-1}}\left( 1/2 \right)$
AC (NCERT)

274649 Resonance frequency of LCR series a.c. circuit is ${{f}_{0}}$. Now the capacitance is made 4 times, then the new resonance frequency will become

1 ${{\text{f}}_{0}}/4$
2 $2{{\text{f}}_{0}}$
3 ${{\text{f}}_{0}}$
4 ${{\text{f}}_{0}}/2$
AC (NCERT)

274650 In an LCR series a.c. circuit, the voltage across each of the components, $\text{L},\text{C}$ and $\text{R}$ is $50\text{V}$. The voltage across the $\text{LC}$ combination will be

1 $100\text{V}$
2 $50\sqrt{2}\text{V}$
3 $50\text{V}$
4 $0\text{V}$
AC (NCERT)

274651 If resistance of $100\text{ }\!\!\Omega\!\!\text{ }$, and inductance of 0.5 henry and capacitance of $10\times {{10}^{6}}$ farad are connected in series through $50\text{Hz}$ A.C. supply, then impedance is

1 $1.8765\text{ }\!\!\Omega\!\!\text{ }$
2 $18.76\text{ }\!\!\Omega\!\!\text{ }$
3 $187.6\text{ }\!\!\Omega\!\!\text{ }$
4 $101.3\text{ }\!\!\Omega\!\!\text{ }$
AC (NCERT)

274652 The current in resistance $R$ at resonance is

1 zero
2 minimum but finite
3 maximum but finite
4 infinite
AC (NCERT)

274654 For a series $RLC$ circuit $R={{X}_{L}}=2{{X}_{C}}$. The impedance of the circuit and phase difference between $V$ and $I$ respectively will be

1 $\frac{\sqrt{5}R}{2},\text{ta}{{\text{n}}^{-1}}\left( 2 \right)$
2 $\frac{\sqrt{5}R}{2},\text{ta}{{\text{n}}^{-1}}\left( 1/2 \right)$
3 $\sqrt{5}{{\text{X}}_{\text{C}}},\text{ta}{{\text{n}}^{-1}}\left( 2 \right)$
4 $\sqrt{5}\text{R},\text{ta}{{\text{n}}^{-1}}\left( 1/2 \right)$
AC (NCERT)

274649 Resonance frequency of LCR series a.c. circuit is ${{f}_{0}}$. Now the capacitance is made 4 times, then the new resonance frequency will become

1 ${{\text{f}}_{0}}/4$
2 $2{{\text{f}}_{0}}$
3 ${{\text{f}}_{0}}$
4 ${{\text{f}}_{0}}/2$
AC (NCERT)

274650 In an LCR series a.c. circuit, the voltage across each of the components, $\text{L},\text{C}$ and $\text{R}$ is $50\text{V}$. The voltage across the $\text{LC}$ combination will be

1 $100\text{V}$
2 $50\sqrt{2}\text{V}$
3 $50\text{V}$
4 $0\text{V}$
AC (NCERT)

274651 If resistance of $100\text{ }\!\!\Omega\!\!\text{ }$, and inductance of 0.5 henry and capacitance of $10\times {{10}^{6}}$ farad are connected in series through $50\text{Hz}$ A.C. supply, then impedance is

1 $1.8765\text{ }\!\!\Omega\!\!\text{ }$
2 $18.76\text{ }\!\!\Omega\!\!\text{ }$
3 $187.6\text{ }\!\!\Omega\!\!\text{ }$
4 $101.3\text{ }\!\!\Omega\!\!\text{ }$
AC (NCERT)

274652 The current in resistance $R$ at resonance is

1 zero
2 minimum but finite
3 maximum but finite
4 infinite
AC (NCERT)

274654 For a series $RLC$ circuit $R={{X}_{L}}=2{{X}_{C}}$. The impedance of the circuit and phase difference between $V$ and $I$ respectively will be

1 $\frac{\sqrt{5}R}{2},\text{ta}{{\text{n}}^{-1}}\left( 2 \right)$
2 $\frac{\sqrt{5}R}{2},\text{ta}{{\text{n}}^{-1}}\left( 1/2 \right)$
3 $\sqrt{5}{{\text{X}}_{\text{C}}},\text{ta}{{\text{n}}^{-1}}\left( 2 \right)$
4 $\sqrt{5}\text{R},\text{ta}{{\text{n}}^{-1}}\left( 1/2 \right)$