04. AC VOLTAGE APPLIED TO AN INDUCTOR
AC (NCERT)

274633 The equation of current in a purely inductive circuit is $5\text{sin}\left( 49\pi t-{{30}^{\circ }} \right)$. If the inductance is $30\text{mH}$ then the equation for the voltage across the inductor, will be :
Let $\left. \pi =\frac{22}{7} \right)$

1 $1.47\text{sin}\left( 49\pi t-{{30}^{\circ }} \right)$
2 $1.47\text{sin}\left( 49\pi t+{{60}^{\circ }} \right)$
3 $23.1\text{sin}\left( 49\pi t-{{30}^{\circ }} \right)$
4 $23.1\text{sin}\left( 49\pi t+{{60}^{\circ }} \right)$
AC (NCERT)

274628 In the case of an inductor

1 voltage lags the current by $\frac{\pi }{2}$
2 voltage leads the current by $\frac{\pi }{2}$
3 voltage leads the current by $\frac{\pi }{3}$
4 voltage leads the current by $\frac{\pi }{4}$
AC (NCERT)

274627 If the frequency of an A.C. is made 4 times of its initial value, the inductive reactance will

1 be 4 times
2 be half
3 be 2 times
4 romain the same
AC (NCERT)

274629 The instantaneous voltage through a device of impedance $20\text{ }\!\!\Omega\!\!\text{ }$ is $e=80\text{sin}100\pi \text{t}$. The effective value of the current is

1 $3\text{A}$
2 $2.828\text{A}$
3 $1.732\text{A}$
4 $4\text{A}$
AC (NCERT)

274630 A sinusoidal voltage $V\left( t \right)=100\text{sin}\left( 500t \right)$ is applied across a pure inductance of $\text{L}=0.02\text{H}$. The current through the coil is:

1 $10\text{cos}\left( 500t \right)$
2 $-10\text{cos}\left( 500t \right)$
3 $10\text{sin}\left( 500t \right)$
4 $-10\text{sin}\left( 500t \right)$
AC (NCERT)

274633 The equation of current in a purely inductive circuit is $5\text{sin}\left( 49\pi t-{{30}^{\circ }} \right)$. If the inductance is $30\text{mH}$ then the equation for the voltage across the inductor, will be :
Let $\left. \pi =\frac{22}{7} \right)$

1 $1.47\text{sin}\left( 49\pi t-{{30}^{\circ }} \right)$
2 $1.47\text{sin}\left( 49\pi t+{{60}^{\circ }} \right)$
3 $23.1\text{sin}\left( 49\pi t-{{30}^{\circ }} \right)$
4 $23.1\text{sin}\left( 49\pi t+{{60}^{\circ }} \right)$
AC (NCERT)

274628 In the case of an inductor

1 voltage lags the current by $\frac{\pi }{2}$
2 voltage leads the current by $\frac{\pi }{2}$
3 voltage leads the current by $\frac{\pi }{3}$
4 voltage leads the current by $\frac{\pi }{4}$
AC (NCERT)

274627 If the frequency of an A.C. is made 4 times of its initial value, the inductive reactance will

1 be 4 times
2 be half
3 be 2 times
4 romain the same
AC (NCERT)

274629 The instantaneous voltage through a device of impedance $20\text{ }\!\!\Omega\!\!\text{ }$ is $e=80\text{sin}100\pi \text{t}$. The effective value of the current is

1 $3\text{A}$
2 $2.828\text{A}$
3 $1.732\text{A}$
4 $4\text{A}$
AC (NCERT)

274630 A sinusoidal voltage $V\left( t \right)=100\text{sin}\left( 500t \right)$ is applied across a pure inductance of $\text{L}=0.02\text{H}$. The current through the coil is:

1 $10\text{cos}\left( 500t \right)$
2 $-10\text{cos}\left( 500t \right)$
3 $10\text{sin}\left( 500t \right)$
4 $-10\text{sin}\left( 500t \right)$
AC (NCERT)

274633 The equation of current in a purely inductive circuit is $5\text{sin}\left( 49\pi t-{{30}^{\circ }} \right)$. If the inductance is $30\text{mH}$ then the equation for the voltage across the inductor, will be :
Let $\left. \pi =\frac{22}{7} \right)$

1 $1.47\text{sin}\left( 49\pi t-{{30}^{\circ }} \right)$
2 $1.47\text{sin}\left( 49\pi t+{{60}^{\circ }} \right)$
3 $23.1\text{sin}\left( 49\pi t-{{30}^{\circ }} \right)$
4 $23.1\text{sin}\left( 49\pi t+{{60}^{\circ }} \right)$
AC (NCERT)

274628 In the case of an inductor

1 voltage lags the current by $\frac{\pi }{2}$
2 voltage leads the current by $\frac{\pi }{2}$
3 voltage leads the current by $\frac{\pi }{3}$
4 voltage leads the current by $\frac{\pi }{4}$
AC (NCERT)

274627 If the frequency of an A.C. is made 4 times of its initial value, the inductive reactance will

1 be 4 times
2 be half
3 be 2 times
4 romain the same
AC (NCERT)

274629 The instantaneous voltage through a device of impedance $20\text{ }\!\!\Omega\!\!\text{ }$ is $e=80\text{sin}100\pi \text{t}$. The effective value of the current is

1 $3\text{A}$
2 $2.828\text{A}$
3 $1.732\text{A}$
4 $4\text{A}$
AC (NCERT)

274630 A sinusoidal voltage $V\left( t \right)=100\text{sin}\left( 500t \right)$ is applied across a pure inductance of $\text{L}=0.02\text{H}$. The current through the coil is:

1 $10\text{cos}\left( 500t \right)$
2 $-10\text{cos}\left( 500t \right)$
3 $10\text{sin}\left( 500t \right)$
4 $-10\text{sin}\left( 500t \right)$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
AC (NCERT)

274633 The equation of current in a purely inductive circuit is $5\text{sin}\left( 49\pi t-{{30}^{\circ }} \right)$. If the inductance is $30\text{mH}$ then the equation for the voltage across the inductor, will be :
Let $\left. \pi =\frac{22}{7} \right)$

1 $1.47\text{sin}\left( 49\pi t-{{30}^{\circ }} \right)$
2 $1.47\text{sin}\left( 49\pi t+{{60}^{\circ }} \right)$
3 $23.1\text{sin}\left( 49\pi t-{{30}^{\circ }} \right)$
4 $23.1\text{sin}\left( 49\pi t+{{60}^{\circ }} \right)$
AC (NCERT)

274628 In the case of an inductor

1 voltage lags the current by $\frac{\pi }{2}$
2 voltage leads the current by $\frac{\pi }{2}$
3 voltage leads the current by $\frac{\pi }{3}$
4 voltage leads the current by $\frac{\pi }{4}$
AC (NCERT)

274627 If the frequency of an A.C. is made 4 times of its initial value, the inductive reactance will

1 be 4 times
2 be half
3 be 2 times
4 romain the same
AC (NCERT)

274629 The instantaneous voltage through a device of impedance $20\text{ }\!\!\Omega\!\!\text{ }$ is $e=80\text{sin}100\pi \text{t}$. The effective value of the current is

1 $3\text{A}$
2 $2.828\text{A}$
3 $1.732\text{A}$
4 $4\text{A}$
AC (NCERT)

274630 A sinusoidal voltage $V\left( t \right)=100\text{sin}\left( 500t \right)$ is applied across a pure inductance of $\text{L}=0.02\text{H}$. The current through the coil is:

1 $10\text{cos}\left( 500t \right)$
2 $-10\text{cos}\left( 500t \right)$
3 $10\text{sin}\left( 500t \right)$
4 $-10\text{sin}\left( 500t \right)$
AC (NCERT)

274633 The equation of current in a purely inductive circuit is $5\text{sin}\left( 49\pi t-{{30}^{\circ }} \right)$. If the inductance is $30\text{mH}$ then the equation for the voltage across the inductor, will be :
Let $\left. \pi =\frac{22}{7} \right)$

1 $1.47\text{sin}\left( 49\pi t-{{30}^{\circ }} \right)$
2 $1.47\text{sin}\left( 49\pi t+{{60}^{\circ }} \right)$
3 $23.1\text{sin}\left( 49\pi t-{{30}^{\circ }} \right)$
4 $23.1\text{sin}\left( 49\pi t+{{60}^{\circ }} \right)$
AC (NCERT)

274628 In the case of an inductor

1 voltage lags the current by $\frac{\pi }{2}$
2 voltage leads the current by $\frac{\pi }{2}$
3 voltage leads the current by $\frac{\pi }{3}$
4 voltage leads the current by $\frac{\pi }{4}$
AC (NCERT)

274627 If the frequency of an A.C. is made 4 times of its initial value, the inductive reactance will

1 be 4 times
2 be half
3 be 2 times
4 romain the same
AC (NCERT)

274629 The instantaneous voltage through a device of impedance $20\text{ }\!\!\Omega\!\!\text{ }$ is $e=80\text{sin}100\pi \text{t}$. The effective value of the current is

1 $3\text{A}$
2 $2.828\text{A}$
3 $1.732\text{A}$
4 $4\text{A}$
AC (NCERT)

274630 A sinusoidal voltage $V\left( t \right)=100\text{sin}\left( 500t \right)$ is applied across a pure inductance of $\text{L}=0.02\text{H}$. The current through the coil is:

1 $10\text{cos}\left( 500t \right)$
2 $-10\text{cos}\left( 500t \right)$
3 $10\text{sin}\left( 500t \right)$
4 $-10\text{sin}\left( 500t \right)$