COMBINATIONS OF CAPACITORS
Electrostatic Potentials and Capacitance

272273 Consider the situation shown in the figure. The capacitor \(A\) has a charge \(q\) on it whereas \(B\) is uncharged. The charge appearing on the capacitor \(B\) a long time after the switch is closed is

1 zero
2 \(a / 2\)
3 a
4 \(2 q\)
Electrostatic Potentials and Capacitance

272274 The resultant capacitance of \(\mathbf{n}\) condenser of capacitances \(\mathrm{C}_1, \mathrm{C}_2 \ldots \mathrm{C}_{\mathrm{n}}\) connected in series is given by

1 \(\mathrm{C}_5=\frac{1}{\mathrm{C}_1}+\frac{1}{\mathrm{C}_2}+\cdots \ldots .+\frac{1}{\mathrm{C}_n}\)
2 \(\frac{1}{C_5}=\frac{1}{C_t}+\cdots \ldots+\frac{1}{C_n}\)
3 \(\mathrm{C}_5=\mathrm{C}_1+\mathrm{C}_2+\cdots \cdot+\mathrm{C}_{\mathrm{n}}\)
4 \(C_5=C_1-C_2+\cdots . . .-C_\pi\)
Electrostatic Potentials and Capacitance

272275 The total charge on the system of capacitors \(C_1=1 \mu \mathrm{~F}, \mathrm{C}_2=2 \mu \mathrm{~F}, \mathrm{C}_3=4 \mu \mathrm{~F}\) and \(\mathrm{C}_4=3 \mu \mathrm{~F}\) connected in parallel is: (Assume a battery of 20 V is connected to the combination)

1 \(200 \mu \mathrm{C}\)
2 200c
3 \(10 \mu \mathrm{C}\)
4 10 C
Electrostatic Potentials and Capacitance

272277 The resultant capacity of \(n\) condensers of capacitances \(C_1, C_2 \ldots C_n\) connected in parallel is

1 \(\mathrm{C}_p=\mathrm{C}_1+\mathrm{C}_2+\cdots \ldots+\mathrm{C}_{\mathrm{n}}\)
2 \(C_p^p=C_1-C_2-C_3 \ldots \ldots-C_n\)
3 \(\frac{1}{C_p}=\frac{1}{C_1}+\frac{1}{C_2}+\cdots \ldots+\frac{1}{C_n}\)
4 \(\mathrm{C}_{\mathrm{p}}=\frac{1}{\mathrm{C}_{\mathrm{t}}}+\frac{1}{\mathrm{C}_2}+\cdots \ldots+\frac{1}{\mathrm{C}_{\mathrm{n}}}\)
Electrostatic Potentials and Capacitance

272281 Three capacitors \(2 \mu \mathrm{~F}, 3 \mu \mathrm{~F}\) and \(6 \mu \mathrm{~F}\) are joined in series with each other. The equivalent
capacitance is-

1 \(1 / 2 \mu \mathrm{~F}\)
2 \(1 \mu \mathrm{~F}\)
3 \(2 \mu \mathrm{~F}\)
4 \(11 \mu \mathrm{~F}\)
Electrostatic Potentials and Capacitance

272273 Consider the situation shown in the figure. The capacitor \(A\) has a charge \(q\) on it whereas \(B\) is uncharged. The charge appearing on the capacitor \(B\) a long time after the switch is closed is

1 zero
2 \(a / 2\)
3 a
4 \(2 q\)
Electrostatic Potentials and Capacitance

272274 The resultant capacitance of \(\mathbf{n}\) condenser of capacitances \(\mathrm{C}_1, \mathrm{C}_2 \ldots \mathrm{C}_{\mathrm{n}}\) connected in series is given by

1 \(\mathrm{C}_5=\frac{1}{\mathrm{C}_1}+\frac{1}{\mathrm{C}_2}+\cdots \ldots .+\frac{1}{\mathrm{C}_n}\)
2 \(\frac{1}{C_5}=\frac{1}{C_t}+\cdots \ldots+\frac{1}{C_n}\)
3 \(\mathrm{C}_5=\mathrm{C}_1+\mathrm{C}_2+\cdots \cdot+\mathrm{C}_{\mathrm{n}}\)
4 \(C_5=C_1-C_2+\cdots . . .-C_\pi\)
Electrostatic Potentials and Capacitance

272275 The total charge on the system of capacitors \(C_1=1 \mu \mathrm{~F}, \mathrm{C}_2=2 \mu \mathrm{~F}, \mathrm{C}_3=4 \mu \mathrm{~F}\) and \(\mathrm{C}_4=3 \mu \mathrm{~F}\) connected in parallel is: (Assume a battery of 20 V is connected to the combination)

1 \(200 \mu \mathrm{C}\)
2 200c
3 \(10 \mu \mathrm{C}\)
4 10 C
Electrostatic Potentials and Capacitance

272277 The resultant capacity of \(n\) condensers of capacitances \(C_1, C_2 \ldots C_n\) connected in parallel is

1 \(\mathrm{C}_p=\mathrm{C}_1+\mathrm{C}_2+\cdots \ldots+\mathrm{C}_{\mathrm{n}}\)
2 \(C_p^p=C_1-C_2-C_3 \ldots \ldots-C_n\)
3 \(\frac{1}{C_p}=\frac{1}{C_1}+\frac{1}{C_2}+\cdots \ldots+\frac{1}{C_n}\)
4 \(\mathrm{C}_{\mathrm{p}}=\frac{1}{\mathrm{C}_{\mathrm{t}}}+\frac{1}{\mathrm{C}_2}+\cdots \ldots+\frac{1}{\mathrm{C}_{\mathrm{n}}}\)
Electrostatic Potentials and Capacitance

272281 Three capacitors \(2 \mu \mathrm{~F}, 3 \mu \mathrm{~F}\) and \(6 \mu \mathrm{~F}\) are joined in series with each other. The equivalent
capacitance is-

1 \(1 / 2 \mu \mathrm{~F}\)
2 \(1 \mu \mathrm{~F}\)
3 \(2 \mu \mathrm{~F}\)
4 \(11 \mu \mathrm{~F}\)
Electrostatic Potentials and Capacitance

272273 Consider the situation shown in the figure. The capacitor \(A\) has a charge \(q\) on it whereas \(B\) is uncharged. The charge appearing on the capacitor \(B\) a long time after the switch is closed is

1 zero
2 \(a / 2\)
3 a
4 \(2 q\)
Electrostatic Potentials and Capacitance

272274 The resultant capacitance of \(\mathbf{n}\) condenser of capacitances \(\mathrm{C}_1, \mathrm{C}_2 \ldots \mathrm{C}_{\mathrm{n}}\) connected in series is given by

1 \(\mathrm{C}_5=\frac{1}{\mathrm{C}_1}+\frac{1}{\mathrm{C}_2}+\cdots \ldots .+\frac{1}{\mathrm{C}_n}\)
2 \(\frac{1}{C_5}=\frac{1}{C_t}+\cdots \ldots+\frac{1}{C_n}\)
3 \(\mathrm{C}_5=\mathrm{C}_1+\mathrm{C}_2+\cdots \cdot+\mathrm{C}_{\mathrm{n}}\)
4 \(C_5=C_1-C_2+\cdots . . .-C_\pi\)
Electrostatic Potentials and Capacitance

272275 The total charge on the system of capacitors \(C_1=1 \mu \mathrm{~F}, \mathrm{C}_2=2 \mu \mathrm{~F}, \mathrm{C}_3=4 \mu \mathrm{~F}\) and \(\mathrm{C}_4=3 \mu \mathrm{~F}\) connected in parallel is: (Assume a battery of 20 V is connected to the combination)

1 \(200 \mu \mathrm{C}\)
2 200c
3 \(10 \mu \mathrm{C}\)
4 10 C
Electrostatic Potentials and Capacitance

272277 The resultant capacity of \(n\) condensers of capacitances \(C_1, C_2 \ldots C_n\) connected in parallel is

1 \(\mathrm{C}_p=\mathrm{C}_1+\mathrm{C}_2+\cdots \ldots+\mathrm{C}_{\mathrm{n}}\)
2 \(C_p^p=C_1-C_2-C_3 \ldots \ldots-C_n\)
3 \(\frac{1}{C_p}=\frac{1}{C_1}+\frac{1}{C_2}+\cdots \ldots+\frac{1}{C_n}\)
4 \(\mathrm{C}_{\mathrm{p}}=\frac{1}{\mathrm{C}_{\mathrm{t}}}+\frac{1}{\mathrm{C}_2}+\cdots \ldots+\frac{1}{\mathrm{C}_{\mathrm{n}}}\)
Electrostatic Potentials and Capacitance

272281 Three capacitors \(2 \mu \mathrm{~F}, 3 \mu \mathrm{~F}\) and \(6 \mu \mathrm{~F}\) are joined in series with each other. The equivalent
capacitance is-

1 \(1 / 2 \mu \mathrm{~F}\)
2 \(1 \mu \mathrm{~F}\)
3 \(2 \mu \mathrm{~F}\)
4 \(11 \mu \mathrm{~F}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Electrostatic Potentials and Capacitance

272273 Consider the situation shown in the figure. The capacitor \(A\) has a charge \(q\) on it whereas \(B\) is uncharged. The charge appearing on the capacitor \(B\) a long time after the switch is closed is

1 zero
2 \(a / 2\)
3 a
4 \(2 q\)
Electrostatic Potentials and Capacitance

272274 The resultant capacitance of \(\mathbf{n}\) condenser of capacitances \(\mathrm{C}_1, \mathrm{C}_2 \ldots \mathrm{C}_{\mathrm{n}}\) connected in series is given by

1 \(\mathrm{C}_5=\frac{1}{\mathrm{C}_1}+\frac{1}{\mathrm{C}_2}+\cdots \ldots .+\frac{1}{\mathrm{C}_n}\)
2 \(\frac{1}{C_5}=\frac{1}{C_t}+\cdots \ldots+\frac{1}{C_n}\)
3 \(\mathrm{C}_5=\mathrm{C}_1+\mathrm{C}_2+\cdots \cdot+\mathrm{C}_{\mathrm{n}}\)
4 \(C_5=C_1-C_2+\cdots . . .-C_\pi\)
Electrostatic Potentials and Capacitance

272275 The total charge on the system of capacitors \(C_1=1 \mu \mathrm{~F}, \mathrm{C}_2=2 \mu \mathrm{~F}, \mathrm{C}_3=4 \mu \mathrm{~F}\) and \(\mathrm{C}_4=3 \mu \mathrm{~F}\) connected in parallel is: (Assume a battery of 20 V is connected to the combination)

1 \(200 \mu \mathrm{C}\)
2 200c
3 \(10 \mu \mathrm{C}\)
4 10 C
Electrostatic Potentials and Capacitance

272277 The resultant capacity of \(n\) condensers of capacitances \(C_1, C_2 \ldots C_n\) connected in parallel is

1 \(\mathrm{C}_p=\mathrm{C}_1+\mathrm{C}_2+\cdots \ldots+\mathrm{C}_{\mathrm{n}}\)
2 \(C_p^p=C_1-C_2-C_3 \ldots \ldots-C_n\)
3 \(\frac{1}{C_p}=\frac{1}{C_1}+\frac{1}{C_2}+\cdots \ldots+\frac{1}{C_n}\)
4 \(\mathrm{C}_{\mathrm{p}}=\frac{1}{\mathrm{C}_{\mathrm{t}}}+\frac{1}{\mathrm{C}_2}+\cdots \ldots+\frac{1}{\mathrm{C}_{\mathrm{n}}}\)
Electrostatic Potentials and Capacitance

272281 Three capacitors \(2 \mu \mathrm{~F}, 3 \mu \mathrm{~F}\) and \(6 \mu \mathrm{~F}\) are joined in series with each other. The equivalent
capacitance is-

1 \(1 / 2 \mu \mathrm{~F}\)
2 \(1 \mu \mathrm{~F}\)
3 \(2 \mu \mathrm{~F}\)
4 \(11 \mu \mathrm{~F}\)
Electrostatic Potentials and Capacitance

272273 Consider the situation shown in the figure. The capacitor \(A\) has a charge \(q\) on it whereas \(B\) is uncharged. The charge appearing on the capacitor \(B\) a long time after the switch is closed is

1 zero
2 \(a / 2\)
3 a
4 \(2 q\)
Electrostatic Potentials and Capacitance

272274 The resultant capacitance of \(\mathbf{n}\) condenser of capacitances \(\mathrm{C}_1, \mathrm{C}_2 \ldots \mathrm{C}_{\mathrm{n}}\) connected in series is given by

1 \(\mathrm{C}_5=\frac{1}{\mathrm{C}_1}+\frac{1}{\mathrm{C}_2}+\cdots \ldots .+\frac{1}{\mathrm{C}_n}\)
2 \(\frac{1}{C_5}=\frac{1}{C_t}+\cdots \ldots+\frac{1}{C_n}\)
3 \(\mathrm{C}_5=\mathrm{C}_1+\mathrm{C}_2+\cdots \cdot+\mathrm{C}_{\mathrm{n}}\)
4 \(C_5=C_1-C_2+\cdots . . .-C_\pi\)
Electrostatic Potentials and Capacitance

272275 The total charge on the system of capacitors \(C_1=1 \mu \mathrm{~F}, \mathrm{C}_2=2 \mu \mathrm{~F}, \mathrm{C}_3=4 \mu \mathrm{~F}\) and \(\mathrm{C}_4=3 \mu \mathrm{~F}\) connected in parallel is: (Assume a battery of 20 V is connected to the combination)

1 \(200 \mu \mathrm{C}\)
2 200c
3 \(10 \mu \mathrm{C}\)
4 10 C
Electrostatic Potentials and Capacitance

272277 The resultant capacity of \(n\) condensers of capacitances \(C_1, C_2 \ldots C_n\) connected in parallel is

1 \(\mathrm{C}_p=\mathrm{C}_1+\mathrm{C}_2+\cdots \ldots+\mathrm{C}_{\mathrm{n}}\)
2 \(C_p^p=C_1-C_2-C_3 \ldots \ldots-C_n\)
3 \(\frac{1}{C_p}=\frac{1}{C_1}+\frac{1}{C_2}+\cdots \ldots+\frac{1}{C_n}\)
4 \(\mathrm{C}_{\mathrm{p}}=\frac{1}{\mathrm{C}_{\mathrm{t}}}+\frac{1}{\mathrm{C}_2}+\cdots \ldots+\frac{1}{\mathrm{C}_{\mathrm{n}}}\)
Electrostatic Potentials and Capacitance

272281 Three capacitors \(2 \mu \mathrm{~F}, 3 \mu \mathrm{~F}\) and \(6 \mu \mathrm{~F}\) are joined in series with each other. The equivalent
capacitance is-

1 \(1 / 2 \mu \mathrm{~F}\)
2 \(1 \mu \mathrm{~F}\)
3 \(2 \mu \mathrm{~F}\)
4 \(11 \mu \mathrm{~F}\)