POTENTIAL DUE TO A POINT CHARGE
Electrostatic Potentials and Capacitance

272233 Three Charges \(2 q,-q\) and \(-q\) lie at vertices of a triangle. The value of \(E\) and \(V\) at centroid of triangle will be-

1 \(\mathrm{E} \neq 0\) and \(\mathrm{V} \neq 0\)
2 \(\mathrm{E}=0\) and \(\mathrm{V}=0\)
3 \(E \neq 0\) and \(V=0\)
4 \(\mathrm{E}=0\) and \(\mathrm{V} \neq 0\)
Electrostatic Potentials and Capacitance

272234 Four point charges \(-Q,-q, 2 q\) and \(2 Q\) are placed, one at each corner of the square. The relation between \(Q\) and \(q\) for which the potential at the centre of the square is zero is

1 \(Q=-q\)
2 \(Q=-\frac{1}{q}\)
3 \(Q=q\)
4 \(Q=\frac{1}{q}\)
Electrostatic Potentials and Capacitance

272232 Charges are placed on the vertices of a square as shown.


Let \(\vec{E}\) be the electric field and \(V\) the potential at the centre.
If the charges on \(A\) and \(B\) are interchanged with those on D and C respectively, then

1 \(\vec{E}\) changes, \(V\) remains unchanged
2 \(\vec{E}\) remains unchanged, \(V\) changes
3 both\(\vec{E}\) and \(V\) change
4 \(\vec{E}\) and \(V\) remain unchanged
Electrostatic Potentials and Capacitance

272233 Three Charges \(2 q,-q\) and \(-q\) lie at vertices of a triangle. The value of \(E\) and \(V\) at centroid of triangle will be-

1 \(\mathrm{E} \neq 0\) and \(\mathrm{V} \neq 0\)
2 \(\mathrm{E}=0\) and \(\mathrm{V}=0\)
3 \(E \neq 0\) and \(V=0\)
4 \(\mathrm{E}=0\) and \(\mathrm{V} \neq 0\)
Electrostatic Potentials and Capacitance

272234 Four point charges \(-Q,-q, 2 q\) and \(2 Q\) are placed, one at each corner of the square. The relation between \(Q\) and \(q\) for which the potential at the centre of the square is zero is

1 \(Q=-q\)
2 \(Q=-\frac{1}{q}\)
3 \(Q=q\)
4 \(Q=\frac{1}{q}\)
Electrostatic Potentials and Capacitance

272232 Charges are placed on the vertices of a square as shown.


Let \(\vec{E}\) be the electric field and \(V\) the potential at the centre.
If the charges on \(A\) and \(B\) are interchanged with those on D and C respectively, then

1 \(\vec{E}\) changes, \(V\) remains unchanged
2 \(\vec{E}\) remains unchanged, \(V\) changes
3 both\(\vec{E}\) and \(V\) change
4 \(\vec{E}\) and \(V\) remain unchanged
Electrostatic Potentials and Capacitance

272233 Three Charges \(2 q,-q\) and \(-q\) lie at vertices of a triangle. The value of \(E\) and \(V\) at centroid of triangle will be-

1 \(\mathrm{E} \neq 0\) and \(\mathrm{V} \neq 0\)
2 \(\mathrm{E}=0\) and \(\mathrm{V}=0\)
3 \(E \neq 0\) and \(V=0\)
4 \(\mathrm{E}=0\) and \(\mathrm{V} \neq 0\)
Electrostatic Potentials and Capacitance

272234 Four point charges \(-Q,-q, 2 q\) and \(2 Q\) are placed, one at each corner of the square. The relation between \(Q\) and \(q\) for which the potential at the centre of the square is zero is

1 \(Q=-q\)
2 \(Q=-\frac{1}{q}\)
3 \(Q=q\)
4 \(Q=\frac{1}{q}\)
Electrostatic Potentials and Capacitance

272232 Charges are placed on the vertices of a square as shown.


Let \(\vec{E}\) be the electric field and \(V\) the potential at the centre.
If the charges on \(A\) and \(B\) are interchanged with those on D and C respectively, then

1 \(\vec{E}\) changes, \(V\) remains unchanged
2 \(\vec{E}\) remains unchanged, \(V\) changes
3 both\(\vec{E}\) and \(V\) change
4 \(\vec{E}\) and \(V\) remain unchanged