270568
The escape velocity of an object on a planet whose radius is 4times that of the earth and ' \(g\) ' value 9 times that on the earth, in \(\mathrm{kms}^{-1}\), is
1 33.6
2 67.2
3 16.8
4 25.2
Explanation:
\(\mathrm{v}_{e}=\sqrt{2 g R} \Rightarrow \mathrm{v}_{e} \propto \sqrt{g R}\)
Gravitation
270569
The escape velocity of a sphere of mass ' \(m\) ' is given by
1 \(\sqrt{\frac{2 G M m}{R_{e}}}\)
2 \(\sqrt{\frac{2 G M}{R_{e}^{2}}}\)
3 \(\sqrt{\frac{2 G M m}{R_{e}^{2}}}\)
4 \(\sqrt{\frac{2 G M}{R_{e}}}\)
Explanation:
\(\mathrm{v}=\sqrt{\frac{2 G M}{R}}\) Escape velocity does not depend upon the mass of the projected body.
Gravitation
270570
A body is projected up with a velocity equal to 3/4th of the escape velocity from the surface of the earth. The height it reaches is (Radius of the earth is \(R\) )
1 \(10 R / 9\)
2 \(9 R / 7\)
3 \(9 R / 8\)
4 \(10 R / 3\)
Explanation:
\(\quad \frac{1}{2} m v_{e}^{2}=\frac{m g h}{1+\frac{h}{R}} ;\)
Gravitation
270571
A space craft is launched in a circular orbit very close to earth. What additional velocity should be given to the space craft so that it might escape the earth's gravitational pull
\(\mathrm{v}=\sqrt{2 g R}-\sqrt{g R} ; \mathrm{v}=\sqrt{g R}(\sqrt{2-1})\)
Gravitation
270572
If the escape velocity on earth is \(11.2 \mathrm{~km} / \mathrm{s}\), its value for a planet having double the radius and 8 times the mass of earth is..(in \(\mathbf{k m} / \mathrm{sec}\) )
1 11.2
2 22.4
3 5.6
4 8
Explanation:
\(\mathrm{v}_{e}=\sqrt{\frac{2 G M}{R}} \Rightarrow \frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}=\sqrt{\frac{M_{1}}{M_{2}} \frac{R_{2}}{R_{1}}}\)
270568
The escape velocity of an object on a planet whose radius is 4times that of the earth and ' \(g\) ' value 9 times that on the earth, in \(\mathrm{kms}^{-1}\), is
1 33.6
2 67.2
3 16.8
4 25.2
Explanation:
\(\mathrm{v}_{e}=\sqrt{2 g R} \Rightarrow \mathrm{v}_{e} \propto \sqrt{g R}\)
Gravitation
270569
The escape velocity of a sphere of mass ' \(m\) ' is given by
1 \(\sqrt{\frac{2 G M m}{R_{e}}}\)
2 \(\sqrt{\frac{2 G M}{R_{e}^{2}}}\)
3 \(\sqrt{\frac{2 G M m}{R_{e}^{2}}}\)
4 \(\sqrt{\frac{2 G M}{R_{e}}}\)
Explanation:
\(\mathrm{v}=\sqrt{\frac{2 G M}{R}}\) Escape velocity does not depend upon the mass of the projected body.
Gravitation
270570
A body is projected up with a velocity equal to 3/4th of the escape velocity from the surface of the earth. The height it reaches is (Radius of the earth is \(R\) )
1 \(10 R / 9\)
2 \(9 R / 7\)
3 \(9 R / 8\)
4 \(10 R / 3\)
Explanation:
\(\quad \frac{1}{2} m v_{e}^{2}=\frac{m g h}{1+\frac{h}{R}} ;\)
Gravitation
270571
A space craft is launched in a circular orbit very close to earth. What additional velocity should be given to the space craft so that it might escape the earth's gravitational pull
\(\mathrm{v}=\sqrt{2 g R}-\sqrt{g R} ; \mathrm{v}=\sqrt{g R}(\sqrt{2-1})\)
Gravitation
270572
If the escape velocity on earth is \(11.2 \mathrm{~km} / \mathrm{s}\), its value for a planet having double the radius and 8 times the mass of earth is..(in \(\mathbf{k m} / \mathrm{sec}\) )
1 11.2
2 22.4
3 5.6
4 8
Explanation:
\(\mathrm{v}_{e}=\sqrt{\frac{2 G M}{R}} \Rightarrow \frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}=\sqrt{\frac{M_{1}}{M_{2}} \frac{R_{2}}{R_{1}}}\)
270568
The escape velocity of an object on a planet whose radius is 4times that of the earth and ' \(g\) ' value 9 times that on the earth, in \(\mathrm{kms}^{-1}\), is
1 33.6
2 67.2
3 16.8
4 25.2
Explanation:
\(\mathrm{v}_{e}=\sqrt{2 g R} \Rightarrow \mathrm{v}_{e} \propto \sqrt{g R}\)
Gravitation
270569
The escape velocity of a sphere of mass ' \(m\) ' is given by
1 \(\sqrt{\frac{2 G M m}{R_{e}}}\)
2 \(\sqrt{\frac{2 G M}{R_{e}^{2}}}\)
3 \(\sqrt{\frac{2 G M m}{R_{e}^{2}}}\)
4 \(\sqrt{\frac{2 G M}{R_{e}}}\)
Explanation:
\(\mathrm{v}=\sqrt{\frac{2 G M}{R}}\) Escape velocity does not depend upon the mass of the projected body.
Gravitation
270570
A body is projected up with a velocity equal to 3/4th of the escape velocity from the surface of the earth. The height it reaches is (Radius of the earth is \(R\) )
1 \(10 R / 9\)
2 \(9 R / 7\)
3 \(9 R / 8\)
4 \(10 R / 3\)
Explanation:
\(\quad \frac{1}{2} m v_{e}^{2}=\frac{m g h}{1+\frac{h}{R}} ;\)
Gravitation
270571
A space craft is launched in a circular orbit very close to earth. What additional velocity should be given to the space craft so that it might escape the earth's gravitational pull
\(\mathrm{v}=\sqrt{2 g R}-\sqrt{g R} ; \mathrm{v}=\sqrt{g R}(\sqrt{2-1})\)
Gravitation
270572
If the escape velocity on earth is \(11.2 \mathrm{~km} / \mathrm{s}\), its value for a planet having double the radius and 8 times the mass of earth is..(in \(\mathbf{k m} / \mathrm{sec}\) )
1 11.2
2 22.4
3 5.6
4 8
Explanation:
\(\mathrm{v}_{e}=\sqrt{\frac{2 G M}{R}} \Rightarrow \frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}=\sqrt{\frac{M_{1}}{M_{2}} \frac{R_{2}}{R_{1}}}\)
270568
The escape velocity of an object on a planet whose radius is 4times that of the earth and ' \(g\) ' value 9 times that on the earth, in \(\mathrm{kms}^{-1}\), is
1 33.6
2 67.2
3 16.8
4 25.2
Explanation:
\(\mathrm{v}_{e}=\sqrt{2 g R} \Rightarrow \mathrm{v}_{e} \propto \sqrt{g R}\)
Gravitation
270569
The escape velocity of a sphere of mass ' \(m\) ' is given by
1 \(\sqrt{\frac{2 G M m}{R_{e}}}\)
2 \(\sqrt{\frac{2 G M}{R_{e}^{2}}}\)
3 \(\sqrt{\frac{2 G M m}{R_{e}^{2}}}\)
4 \(\sqrt{\frac{2 G M}{R_{e}}}\)
Explanation:
\(\mathrm{v}=\sqrt{\frac{2 G M}{R}}\) Escape velocity does not depend upon the mass of the projected body.
Gravitation
270570
A body is projected up with a velocity equal to 3/4th of the escape velocity from the surface of the earth. The height it reaches is (Radius of the earth is \(R\) )
1 \(10 R / 9\)
2 \(9 R / 7\)
3 \(9 R / 8\)
4 \(10 R / 3\)
Explanation:
\(\quad \frac{1}{2} m v_{e}^{2}=\frac{m g h}{1+\frac{h}{R}} ;\)
Gravitation
270571
A space craft is launched in a circular orbit very close to earth. What additional velocity should be given to the space craft so that it might escape the earth's gravitational pull
\(\mathrm{v}=\sqrt{2 g R}-\sqrt{g R} ; \mathrm{v}=\sqrt{g R}(\sqrt{2-1})\)
Gravitation
270572
If the escape velocity on earth is \(11.2 \mathrm{~km} / \mathrm{s}\), its value for a planet having double the radius and 8 times the mass of earth is..(in \(\mathbf{k m} / \mathrm{sec}\) )
1 11.2
2 22.4
3 5.6
4 8
Explanation:
\(\mathrm{v}_{e}=\sqrt{\frac{2 G M}{R}} \Rightarrow \frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}=\sqrt{\frac{M_{1}}{M_{2}} \frac{R_{2}}{R_{1}}}\)
270568
The escape velocity of an object on a planet whose radius is 4times that of the earth and ' \(g\) ' value 9 times that on the earth, in \(\mathrm{kms}^{-1}\), is
1 33.6
2 67.2
3 16.8
4 25.2
Explanation:
\(\mathrm{v}_{e}=\sqrt{2 g R} \Rightarrow \mathrm{v}_{e} \propto \sqrt{g R}\)
Gravitation
270569
The escape velocity of a sphere of mass ' \(m\) ' is given by
1 \(\sqrt{\frac{2 G M m}{R_{e}}}\)
2 \(\sqrt{\frac{2 G M}{R_{e}^{2}}}\)
3 \(\sqrt{\frac{2 G M m}{R_{e}^{2}}}\)
4 \(\sqrt{\frac{2 G M}{R_{e}}}\)
Explanation:
\(\mathrm{v}=\sqrt{\frac{2 G M}{R}}\) Escape velocity does not depend upon the mass of the projected body.
Gravitation
270570
A body is projected up with a velocity equal to 3/4th of the escape velocity from the surface of the earth. The height it reaches is (Radius of the earth is \(R\) )
1 \(10 R / 9\)
2 \(9 R / 7\)
3 \(9 R / 8\)
4 \(10 R / 3\)
Explanation:
\(\quad \frac{1}{2} m v_{e}^{2}=\frac{m g h}{1+\frac{h}{R}} ;\)
Gravitation
270571
A space craft is launched in a circular orbit very close to earth. What additional velocity should be given to the space craft so that it might escape the earth's gravitational pull
\(\mathrm{v}=\sqrt{2 g R}-\sqrt{g R} ; \mathrm{v}=\sqrt{g R}(\sqrt{2-1})\)
Gravitation
270572
If the escape velocity on earth is \(11.2 \mathrm{~km} / \mathrm{s}\), its value for a planet having double the radius and 8 times the mass of earth is..(in \(\mathbf{k m} / \mathrm{sec}\) )
1 11.2
2 22.4
3 5.6
4 8
Explanation:
\(\mathrm{v}_{e}=\sqrt{\frac{2 G M}{R}} \Rightarrow \frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}=\sqrt{\frac{M_{1}}{M_{2}} \frac{R_{2}}{R_{1}}}\)