270281 The minimum force required to start pushing a body up a rough (frictional coefficient\(\mu\) ) inclined plane is \(F_{1}\) while the minimum force needed to prevent it from sliding down is \(F_{2}\). If the inclined plane makes an angle \(\theta\) with the horizontal such that \(\tan \theta=2 \mu\), then the ratio \(\frac{F_{1}}{F_{2}}\) is (AIEEE-2011)
270281 The minimum force required to start pushing a body up a rough (frictional coefficient\(\mu\) ) inclined plane is \(F_{1}\) while the minimum force needed to prevent it from sliding down is \(F_{2}\). If the inclined plane makes an angle \(\theta\) with the horizontal such that \(\tan \theta=2 \mu\), then the ratio \(\frac{F_{1}}{F_{2}}\) is (AIEEE-2011)
270281 The minimum force required to start pushing a body up a rough (frictional coefficient\(\mu\) ) inclined plane is \(F_{1}\) while the minimum force needed to prevent it from sliding down is \(F_{2}\). If the inclined plane makes an angle \(\theta\) with the horizontal such that \(\tan \theta=2 \mu\), then the ratio \(\frac{F_{1}}{F_{2}}\) is (AIEEE-2011)
270281 The minimum force required to start pushing a body up a rough (frictional coefficient\(\mu\) ) inclined plane is \(F_{1}\) while the minimum force needed to prevent it from sliding down is \(F_{2}\). If the inclined plane makes an angle \(\theta\) with the horizontal such that \(\tan \theta=2 \mu\), then the ratio \(\frac{F_{1}}{F_{2}}\) is (AIEEE-2011)
270281 The minimum force required to start pushing a body up a rough (frictional coefficient\(\mu\) ) inclined plane is \(F_{1}\) while the minimum force needed to prevent it from sliding down is \(F_{2}\). If the inclined plane makes an angle \(\theta\) with the horizontal such that \(\tan \theta=2 \mu\), then the ratio \(\frac{F_{1}}{F_{2}}\) is (AIEEE-2011)