MOTION OF A BODY ON THE INCLINED PLANE
Laws of Motion

270174 The angle of inclination of an inclined plane is \(60^{\circ}\). Coefficient of friction between \(10 \mathrm{~kg}\) body on it and its surface is \(0.2, \mathrm{~g}=10 \mathrm{~ms}^{-2}\). The acceleration of the body down the plane in \(\mathrm{ms}^{-2}\) is

1 5.667
2 6.66
3 7.66
4 Zero
Laws of Motion

270175 In the above problem the resultant force on the body is

1 \(56.6 \mathrm{~N}\)
2 \(66.6 \mathrm{~N}\)
3 \(76.6 \mathrm{~N}\)
4 \(86.6 \mathrm{~N}\)
Laws of Motion

270176 In the above problem, the frictional force on the body is

1 Zero
2 \(5 \mathrm{~N}\)
3 \(7.5 \mathrm{~N}\)
4 \(10 \mathrm{~N}\)
Laws of Motion

270177 In the above problem, the minimum force required to pull the body up the inclined plane

1 \(66.6 \mathrm{~N}\)
2 \(86.6 \mathrm{~N}\)
3 \(96.6 \mathrm{~N}\)
4 \(76.6 \mathrm{~N}\)
Laws of Motion

270178 When a body slides down an inclined plane with coefficient of friction as \(\mu_{k}\), then its acceleration is given by

1 \(\mathrm{g}\left(\mu_{\mathrm{k}} \sin ?+\cos ?\right)\)
2 \(g\left(\mu_{\mathrm{k}} \sin ?-\cos ?\right)\)
3 \(\mathrm{g}\left(\sin ?+\mu_{\mathrm{k}} \cos ?\right)\)
4 \(g\left(\sin ?-\mu_{k} \cos ?\right)\)
Laws of Motion

270174 The angle of inclination of an inclined plane is \(60^{\circ}\). Coefficient of friction between \(10 \mathrm{~kg}\) body on it and its surface is \(0.2, \mathrm{~g}=10 \mathrm{~ms}^{-2}\). The acceleration of the body down the plane in \(\mathrm{ms}^{-2}\) is

1 5.667
2 6.66
3 7.66
4 Zero
Laws of Motion

270175 In the above problem the resultant force on the body is

1 \(56.6 \mathrm{~N}\)
2 \(66.6 \mathrm{~N}\)
3 \(76.6 \mathrm{~N}\)
4 \(86.6 \mathrm{~N}\)
Laws of Motion

270176 In the above problem, the frictional force on the body is

1 Zero
2 \(5 \mathrm{~N}\)
3 \(7.5 \mathrm{~N}\)
4 \(10 \mathrm{~N}\)
Laws of Motion

270177 In the above problem, the minimum force required to pull the body up the inclined plane

1 \(66.6 \mathrm{~N}\)
2 \(86.6 \mathrm{~N}\)
3 \(96.6 \mathrm{~N}\)
4 \(76.6 \mathrm{~N}\)
Laws of Motion

270178 When a body slides down an inclined plane with coefficient of friction as \(\mu_{k}\), then its acceleration is given by

1 \(\mathrm{g}\left(\mu_{\mathrm{k}} \sin ?+\cos ?\right)\)
2 \(g\left(\mu_{\mathrm{k}} \sin ?-\cos ?\right)\)
3 \(\mathrm{g}\left(\sin ?+\mu_{\mathrm{k}} \cos ?\right)\)
4 \(g\left(\sin ?-\mu_{k} \cos ?\right)\)
Laws of Motion

270174 The angle of inclination of an inclined plane is \(60^{\circ}\). Coefficient of friction between \(10 \mathrm{~kg}\) body on it and its surface is \(0.2, \mathrm{~g}=10 \mathrm{~ms}^{-2}\). The acceleration of the body down the plane in \(\mathrm{ms}^{-2}\) is

1 5.667
2 6.66
3 7.66
4 Zero
Laws of Motion

270175 In the above problem the resultant force on the body is

1 \(56.6 \mathrm{~N}\)
2 \(66.6 \mathrm{~N}\)
3 \(76.6 \mathrm{~N}\)
4 \(86.6 \mathrm{~N}\)
Laws of Motion

270176 In the above problem, the frictional force on the body is

1 Zero
2 \(5 \mathrm{~N}\)
3 \(7.5 \mathrm{~N}\)
4 \(10 \mathrm{~N}\)
Laws of Motion

270177 In the above problem, the minimum force required to pull the body up the inclined plane

1 \(66.6 \mathrm{~N}\)
2 \(86.6 \mathrm{~N}\)
3 \(96.6 \mathrm{~N}\)
4 \(76.6 \mathrm{~N}\)
Laws of Motion

270178 When a body slides down an inclined plane with coefficient of friction as \(\mu_{k}\), then its acceleration is given by

1 \(\mathrm{g}\left(\mu_{\mathrm{k}} \sin ?+\cos ?\right)\)
2 \(g\left(\mu_{\mathrm{k}} \sin ?-\cos ?\right)\)
3 \(\mathrm{g}\left(\sin ?+\mu_{\mathrm{k}} \cos ?\right)\)
4 \(g\left(\sin ?-\mu_{k} \cos ?\right)\)
Laws of Motion

270174 The angle of inclination of an inclined plane is \(60^{\circ}\). Coefficient of friction between \(10 \mathrm{~kg}\) body on it and its surface is \(0.2, \mathrm{~g}=10 \mathrm{~ms}^{-2}\). The acceleration of the body down the plane in \(\mathrm{ms}^{-2}\) is

1 5.667
2 6.66
3 7.66
4 Zero
Laws of Motion

270175 In the above problem the resultant force on the body is

1 \(56.6 \mathrm{~N}\)
2 \(66.6 \mathrm{~N}\)
3 \(76.6 \mathrm{~N}\)
4 \(86.6 \mathrm{~N}\)
Laws of Motion

270176 In the above problem, the frictional force on the body is

1 Zero
2 \(5 \mathrm{~N}\)
3 \(7.5 \mathrm{~N}\)
4 \(10 \mathrm{~N}\)
Laws of Motion

270177 In the above problem, the minimum force required to pull the body up the inclined plane

1 \(66.6 \mathrm{~N}\)
2 \(86.6 \mathrm{~N}\)
3 \(96.6 \mathrm{~N}\)
4 \(76.6 \mathrm{~N}\)
Laws of Motion

270178 When a body slides down an inclined plane with coefficient of friction as \(\mu_{k}\), then its acceleration is given by

1 \(\mathrm{g}\left(\mu_{\mathrm{k}} \sin ?+\cos ?\right)\)
2 \(g\left(\mu_{\mathrm{k}} \sin ?-\cos ?\right)\)
3 \(\mathrm{g}\left(\sin ?+\mu_{\mathrm{k}} \cos ?\right)\)
4 \(g\left(\sin ?-\mu_{k} \cos ?\right)\)
Laws of Motion

270174 The angle of inclination of an inclined plane is \(60^{\circ}\). Coefficient of friction between \(10 \mathrm{~kg}\) body on it and its surface is \(0.2, \mathrm{~g}=10 \mathrm{~ms}^{-2}\). The acceleration of the body down the plane in \(\mathrm{ms}^{-2}\) is

1 5.667
2 6.66
3 7.66
4 Zero
Laws of Motion

270175 In the above problem the resultant force on the body is

1 \(56.6 \mathrm{~N}\)
2 \(66.6 \mathrm{~N}\)
3 \(76.6 \mathrm{~N}\)
4 \(86.6 \mathrm{~N}\)
Laws of Motion

270176 In the above problem, the frictional force on the body is

1 Zero
2 \(5 \mathrm{~N}\)
3 \(7.5 \mathrm{~N}\)
4 \(10 \mathrm{~N}\)
Laws of Motion

270177 In the above problem, the minimum force required to pull the body up the inclined plane

1 \(66.6 \mathrm{~N}\)
2 \(86.6 \mathrm{~N}\)
3 \(96.6 \mathrm{~N}\)
4 \(76.6 \mathrm{~N}\)
Laws of Motion

270178 When a body slides down an inclined plane with coefficient of friction as \(\mu_{k}\), then its acceleration is given by

1 \(\mathrm{g}\left(\mu_{\mathrm{k}} \sin ?+\cos ?\right)\)
2 \(g\left(\mu_{\mathrm{k}} \sin ?-\cos ?\right)\)
3 \(\mathrm{g}\left(\sin ?+\mu_{\mathrm{k}} \cos ?\right)\)
4 \(g\left(\sin ?-\mu_{k} \cos ?\right)\)