269437
A particle is moving with uniform speed\(0.5 \mathrm{~m} / \mathrm{s}\) along a circle of radius \(1 \mathrm{~m}\) then the angular velocity of particle is ( in rads \({ }^{-1}\) )
1 2
2 1.5
3 \(1\)
4 0.5
Explanation:
\(\omega=\frac{v}{r}\)
Rotational Motion
269438
The angular velocity of the seconds hand in a watch is
1 \(0.053 \mathrm{rad} / \mathrm{s}\)
2 \(0.210 \mathrm{rad} / \mathrm{s}\)
3 \(0.105 \mathrm{rad} / \mathrm{s}\)
4 \(0.42 \mathrm{rad} / \mathrm{s}\)
Explanation:
\(\omega=\frac{2 \pi}{60}\)
Rotational Motion
269439
The angular displacement of a particle is given by\(\theta=t^{3}+2 t+1\), where \(t\) is time in seconds. Its angular acceleration at \(t=2 s\) is
1 \(14 \mathrm{rad} \mathrm{s}^{-2}\)
2 \(17 \mathrm{rads}^{-2}\)
3 \(12 \mathrm{rads}^{-2}\)
4 \(9 \mathrm{rad} \mathrm{s}^{-2}\)
Explanation:
\(\alpha=\frac{d \omega}{d t}\)
Rotational Motion
269501
The linear and angular velocities of a body in rotatory motion are\(3 \mathrm{~ms}^{-1}\) and \(6 \mathrm{rad} / \mathrm{s}\) respectively. If the linear acceleration is 6 \(\mathrm{m} / \mathbf{s}^{2}\) then its angular acceleration in rads \({ }^{-2}\) is
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
Rotational Motion
269437
A particle is moving with uniform speed\(0.5 \mathrm{~m} / \mathrm{s}\) along a circle of radius \(1 \mathrm{~m}\) then the angular velocity of particle is ( in rads \({ }^{-1}\) )
1 2
2 1.5
3 \(1\)
4 0.5
Explanation:
\(\omega=\frac{v}{r}\)
Rotational Motion
269438
The angular velocity of the seconds hand in a watch is
1 \(0.053 \mathrm{rad} / \mathrm{s}\)
2 \(0.210 \mathrm{rad} / \mathrm{s}\)
3 \(0.105 \mathrm{rad} / \mathrm{s}\)
4 \(0.42 \mathrm{rad} / \mathrm{s}\)
Explanation:
\(\omega=\frac{2 \pi}{60}\)
Rotational Motion
269439
The angular displacement of a particle is given by\(\theta=t^{3}+2 t+1\), where \(t\) is time in seconds. Its angular acceleration at \(t=2 s\) is
1 \(14 \mathrm{rad} \mathrm{s}^{-2}\)
2 \(17 \mathrm{rads}^{-2}\)
3 \(12 \mathrm{rads}^{-2}\)
4 \(9 \mathrm{rad} \mathrm{s}^{-2}\)
Explanation:
\(\alpha=\frac{d \omega}{d t}\)
Rotational Motion
269501
The linear and angular velocities of a body in rotatory motion are\(3 \mathrm{~ms}^{-1}\) and \(6 \mathrm{rad} / \mathrm{s}\) respectively. If the linear acceleration is 6 \(\mathrm{m} / \mathbf{s}^{2}\) then its angular acceleration in rads \({ }^{-2}\) is
269437
A particle is moving with uniform speed\(0.5 \mathrm{~m} / \mathrm{s}\) along a circle of radius \(1 \mathrm{~m}\) then the angular velocity of particle is ( in rads \({ }^{-1}\) )
1 2
2 1.5
3 \(1\)
4 0.5
Explanation:
\(\omega=\frac{v}{r}\)
Rotational Motion
269438
The angular velocity of the seconds hand in a watch is
1 \(0.053 \mathrm{rad} / \mathrm{s}\)
2 \(0.210 \mathrm{rad} / \mathrm{s}\)
3 \(0.105 \mathrm{rad} / \mathrm{s}\)
4 \(0.42 \mathrm{rad} / \mathrm{s}\)
Explanation:
\(\omega=\frac{2 \pi}{60}\)
Rotational Motion
269439
The angular displacement of a particle is given by\(\theta=t^{3}+2 t+1\), where \(t\) is time in seconds. Its angular acceleration at \(t=2 s\) is
1 \(14 \mathrm{rad} \mathrm{s}^{-2}\)
2 \(17 \mathrm{rads}^{-2}\)
3 \(12 \mathrm{rads}^{-2}\)
4 \(9 \mathrm{rad} \mathrm{s}^{-2}\)
Explanation:
\(\alpha=\frac{d \omega}{d t}\)
Rotational Motion
269501
The linear and angular velocities of a body in rotatory motion are\(3 \mathrm{~ms}^{-1}\) and \(6 \mathrm{rad} / \mathrm{s}\) respectively. If the linear acceleration is 6 \(\mathrm{m} / \mathbf{s}^{2}\) then its angular acceleration in rads \({ }^{-2}\) is
269437
A particle is moving with uniform speed\(0.5 \mathrm{~m} / \mathrm{s}\) along a circle of radius \(1 \mathrm{~m}\) then the angular velocity of particle is ( in rads \({ }^{-1}\) )
1 2
2 1.5
3 \(1\)
4 0.5
Explanation:
\(\omega=\frac{v}{r}\)
Rotational Motion
269438
The angular velocity of the seconds hand in a watch is
1 \(0.053 \mathrm{rad} / \mathrm{s}\)
2 \(0.210 \mathrm{rad} / \mathrm{s}\)
3 \(0.105 \mathrm{rad} / \mathrm{s}\)
4 \(0.42 \mathrm{rad} / \mathrm{s}\)
Explanation:
\(\omega=\frac{2 \pi}{60}\)
Rotational Motion
269439
The angular displacement of a particle is given by\(\theta=t^{3}+2 t+1\), where \(t\) is time in seconds. Its angular acceleration at \(t=2 s\) is
1 \(14 \mathrm{rad} \mathrm{s}^{-2}\)
2 \(17 \mathrm{rads}^{-2}\)
3 \(12 \mathrm{rads}^{-2}\)
4 \(9 \mathrm{rad} \mathrm{s}^{-2}\)
Explanation:
\(\alpha=\frac{d \omega}{d t}\)
Rotational Motion
269501
The linear and angular velocities of a body in rotatory motion are\(3 \mathrm{~ms}^{-1}\) and \(6 \mathrm{rad} / \mathrm{s}\) respectively. If the linear acceleration is 6 \(\mathrm{m} / \mathbf{s}^{2}\) then its angular acceleration in rads \({ }^{-2}\) is