ROTATIONALVARIABLES, RELATION BETWEEN LINEAR \& ANGULAR VARIABLES
Rotational Motion

269437 A particle is moving with uniform speed\(0.5 \mathrm{~m} / \mathrm{s}\) along a circle of radius \(1 \mathrm{~m}\) then the angular velocity of particle is ( in rads \({ }^{-1}\) )

1 2
2 1.5
3 \(1\)
4 0.5
Rotational Motion

269438 The angular velocity of the seconds hand in a watch is

1 \(0.053 \mathrm{rad} / \mathrm{s}\)
2 \(0.210 \mathrm{rad} / \mathrm{s}\)
3 \(0.105 \mathrm{rad} / \mathrm{s}\)
4 \(0.42 \mathrm{rad} / \mathrm{s}\)
Rotational Motion

269439 The angular displacement of a particle is given by\(\theta=t^{3}+2 t+1\), where \(t\) is time in seconds. Its angular acceleration at \(t=2 s\) is

1 \(14 \mathrm{rad} \mathrm{s}^{-2}\)
2 \(17 \mathrm{rads}^{-2}\)
3 \(12 \mathrm{rads}^{-2}\)
4 \(9 \mathrm{rad} \mathrm{s}^{-2}\)
Rotational Motion

269501 The linear and angular velocities of a body in rotatory motion are\(3 \mathrm{~ms}^{-1}\) and \(6 \mathrm{rad} / \mathrm{s}\) respectively. If the linear acceleration is 6 \(\mathrm{m} / \mathbf{s}^{2}\) then its angular acceleration in rads \({ }^{-2}\) is

1 6
2 10
3 12
4 2
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Rotational Motion

269437 A particle is moving with uniform speed\(0.5 \mathrm{~m} / \mathrm{s}\) along a circle of radius \(1 \mathrm{~m}\) then the angular velocity of particle is ( in rads \({ }^{-1}\) )

1 2
2 1.5
3 \(1\)
4 0.5
Rotational Motion

269438 The angular velocity of the seconds hand in a watch is

1 \(0.053 \mathrm{rad} / \mathrm{s}\)
2 \(0.210 \mathrm{rad} / \mathrm{s}\)
3 \(0.105 \mathrm{rad} / \mathrm{s}\)
4 \(0.42 \mathrm{rad} / \mathrm{s}\)
Rotational Motion

269439 The angular displacement of a particle is given by\(\theta=t^{3}+2 t+1\), where \(t\) is time in seconds. Its angular acceleration at \(t=2 s\) is

1 \(14 \mathrm{rad} \mathrm{s}^{-2}\)
2 \(17 \mathrm{rads}^{-2}\)
3 \(12 \mathrm{rads}^{-2}\)
4 \(9 \mathrm{rad} \mathrm{s}^{-2}\)
Rotational Motion

269501 The linear and angular velocities of a body in rotatory motion are\(3 \mathrm{~ms}^{-1}\) and \(6 \mathrm{rad} / \mathrm{s}\) respectively. If the linear acceleration is 6 \(\mathrm{m} / \mathbf{s}^{2}\) then its angular acceleration in rads \({ }^{-2}\) is

1 6
2 10
3 12
4 2
Rotational Motion

269437 A particle is moving with uniform speed\(0.5 \mathrm{~m} / \mathrm{s}\) along a circle of radius \(1 \mathrm{~m}\) then the angular velocity of particle is ( in rads \({ }^{-1}\) )

1 2
2 1.5
3 \(1\)
4 0.5
Rotational Motion

269438 The angular velocity of the seconds hand in a watch is

1 \(0.053 \mathrm{rad} / \mathrm{s}\)
2 \(0.210 \mathrm{rad} / \mathrm{s}\)
3 \(0.105 \mathrm{rad} / \mathrm{s}\)
4 \(0.42 \mathrm{rad} / \mathrm{s}\)
Rotational Motion

269439 The angular displacement of a particle is given by\(\theta=t^{3}+2 t+1\), where \(t\) is time in seconds. Its angular acceleration at \(t=2 s\) is

1 \(14 \mathrm{rad} \mathrm{s}^{-2}\)
2 \(17 \mathrm{rads}^{-2}\)
3 \(12 \mathrm{rads}^{-2}\)
4 \(9 \mathrm{rad} \mathrm{s}^{-2}\)
Rotational Motion

269501 The linear and angular velocities of a body in rotatory motion are\(3 \mathrm{~ms}^{-1}\) and \(6 \mathrm{rad} / \mathrm{s}\) respectively. If the linear acceleration is 6 \(\mathrm{m} / \mathbf{s}^{2}\) then its angular acceleration in rads \({ }^{-2}\) is

1 6
2 10
3 12
4 2
Rotational Motion

269437 A particle is moving with uniform speed\(0.5 \mathrm{~m} / \mathrm{s}\) along a circle of radius \(1 \mathrm{~m}\) then the angular velocity of particle is ( in rads \({ }^{-1}\) )

1 2
2 1.5
3 \(1\)
4 0.5
Rotational Motion

269438 The angular velocity of the seconds hand in a watch is

1 \(0.053 \mathrm{rad} / \mathrm{s}\)
2 \(0.210 \mathrm{rad} / \mathrm{s}\)
3 \(0.105 \mathrm{rad} / \mathrm{s}\)
4 \(0.42 \mathrm{rad} / \mathrm{s}\)
Rotational Motion

269439 The angular displacement of a particle is given by\(\theta=t^{3}+2 t+1\), where \(t\) is time in seconds. Its angular acceleration at \(t=2 s\) is

1 \(14 \mathrm{rad} \mathrm{s}^{-2}\)
2 \(17 \mathrm{rads}^{-2}\)
3 \(12 \mathrm{rads}^{-2}\)
4 \(9 \mathrm{rad} \mathrm{s}^{-2}\)
Rotational Motion

269501 The linear and angular velocities of a body in rotatory motion are\(3 \mathrm{~ms}^{-1}\) and \(6 \mathrm{rad} / \mathrm{s}\) respectively. If the linear acceleration is 6 \(\mathrm{m} / \mathbf{s}^{2}\) then its angular acceleration in rads \({ }^{-2}\) is

1 6
2 10
3 12
4 2