ROTATIONALVARIABLES, RELATION BETWEEN LINEAR \& ANGULAR VARIABLES
Rotational Motion

269379 In the above problem, the angular acceleration of the particle at\(t=2 \mathrm{sec}\) is ......... rads \(^{-2}\)

1 14
2 16
3 18
4 24
Rotational Motion

269375 The linear velocity of a point on the surface of earth at a latitude of\(60^{\circ}\) is

1 \(\frac{800}{3} \mathrm{~m} / \mathrm{sec}\)
2 \(\frac{800 \pi}{3} \mathrm{~m} / \mathrm{sec}\)
3 \(800 \times \frac{5}{18} \mathrm{~m} / \mathrm{sec}\)
4 \(\frac{2000 \pi}{27} \mathrm{~m} / \mathrm{sec}\)
Rotational Motion

269376 A table fan, rotating at a speed of\(2400 \mathrm{rpm}\) is switched off and the resulting variation of the rpm with time is shown in the figure. The total number of revolutions of the fan before it comes to rest is

1 420
2 280
3 240
4 380
Rotational Motion

269377 The average angular velocity of the seconds hand of a watch if the seconds hand of the watch completes one revolution in 1 minute is

1 \(\frac{\pi}{15} \mathrm{rads}^{-1}\)
2 \(\frac{\pi}{30}\) rads \(^{-1}\)
3 \(\frac{\pi}{45} \mathrm{rads}^{-1}\)
4 \(\frac{\pi}{7}\) rads \(^{-1}\)
Rotational Motion

269378 The angular displacement of a particle is given by \(\theta=t^{3}+t^{2}+t+1\) then, its angular velocity at \(\mathbf{t}=2 \mathrm{sec}\) is ......... rads \(^{-1}\)

1 27
2 17
3 15
4 16
Rotational Motion

269379 In the above problem, the angular acceleration of the particle at\(t=2 \mathrm{sec}\) is ......... rads \(^{-2}\)

1 14
2 16
3 18
4 24
Rotational Motion

269375 The linear velocity of a point on the surface of earth at a latitude of\(60^{\circ}\) is

1 \(\frac{800}{3} \mathrm{~m} / \mathrm{sec}\)
2 \(\frac{800 \pi}{3} \mathrm{~m} / \mathrm{sec}\)
3 \(800 \times \frac{5}{18} \mathrm{~m} / \mathrm{sec}\)
4 \(\frac{2000 \pi}{27} \mathrm{~m} / \mathrm{sec}\)
Rotational Motion

269376 A table fan, rotating at a speed of\(2400 \mathrm{rpm}\) is switched off and the resulting variation of the rpm with time is shown in the figure. The total number of revolutions of the fan before it comes to rest is

1 420
2 280
3 240
4 380
Rotational Motion

269377 The average angular velocity of the seconds hand of a watch if the seconds hand of the watch completes one revolution in 1 minute is

1 \(\frac{\pi}{15} \mathrm{rads}^{-1}\)
2 \(\frac{\pi}{30}\) rads \(^{-1}\)
3 \(\frac{\pi}{45} \mathrm{rads}^{-1}\)
4 \(\frac{\pi}{7}\) rads \(^{-1}\)
Rotational Motion

269378 The angular displacement of a particle is given by \(\theta=t^{3}+t^{2}+t+1\) then, its angular velocity at \(\mathbf{t}=2 \mathrm{sec}\) is ......... rads \(^{-1}\)

1 27
2 17
3 15
4 16
Rotational Motion

269379 In the above problem, the angular acceleration of the particle at\(t=2 \mathrm{sec}\) is ......... rads \(^{-2}\)

1 14
2 16
3 18
4 24
Rotational Motion

269375 The linear velocity of a point on the surface of earth at a latitude of\(60^{\circ}\) is

1 \(\frac{800}{3} \mathrm{~m} / \mathrm{sec}\)
2 \(\frac{800 \pi}{3} \mathrm{~m} / \mathrm{sec}\)
3 \(800 \times \frac{5}{18} \mathrm{~m} / \mathrm{sec}\)
4 \(\frac{2000 \pi}{27} \mathrm{~m} / \mathrm{sec}\)
Rotational Motion

269376 A table fan, rotating at a speed of\(2400 \mathrm{rpm}\) is switched off and the resulting variation of the rpm with time is shown in the figure. The total number of revolutions of the fan before it comes to rest is

1 420
2 280
3 240
4 380
Rotational Motion

269377 The average angular velocity of the seconds hand of a watch if the seconds hand of the watch completes one revolution in 1 minute is

1 \(\frac{\pi}{15} \mathrm{rads}^{-1}\)
2 \(\frac{\pi}{30}\) rads \(^{-1}\)
3 \(\frac{\pi}{45} \mathrm{rads}^{-1}\)
4 \(\frac{\pi}{7}\) rads \(^{-1}\)
Rotational Motion

269378 The angular displacement of a particle is given by \(\theta=t^{3}+t^{2}+t+1\) then, its angular velocity at \(\mathbf{t}=2 \mathrm{sec}\) is ......... rads \(^{-1}\)

1 27
2 17
3 15
4 16
Rotational Motion

269379 In the above problem, the angular acceleration of the particle at\(t=2 \mathrm{sec}\) is ......... rads \(^{-2}\)

1 14
2 16
3 18
4 24
Rotational Motion

269375 The linear velocity of a point on the surface of earth at a latitude of\(60^{\circ}\) is

1 \(\frac{800}{3} \mathrm{~m} / \mathrm{sec}\)
2 \(\frac{800 \pi}{3} \mathrm{~m} / \mathrm{sec}\)
3 \(800 \times \frac{5}{18} \mathrm{~m} / \mathrm{sec}\)
4 \(\frac{2000 \pi}{27} \mathrm{~m} / \mathrm{sec}\)
Rotational Motion

269376 A table fan, rotating at a speed of\(2400 \mathrm{rpm}\) is switched off and the resulting variation of the rpm with time is shown in the figure. The total number of revolutions of the fan before it comes to rest is

1 420
2 280
3 240
4 380
Rotational Motion

269377 The average angular velocity of the seconds hand of a watch if the seconds hand of the watch completes one revolution in 1 minute is

1 \(\frac{\pi}{15} \mathrm{rads}^{-1}\)
2 \(\frac{\pi}{30}\) rads \(^{-1}\)
3 \(\frac{\pi}{45} \mathrm{rads}^{-1}\)
4 \(\frac{\pi}{7}\) rads \(^{-1}\)
Rotational Motion

269378 The angular displacement of a particle is given by \(\theta=t^{3}+t^{2}+t+1\) then, its angular velocity at \(\mathbf{t}=2 \mathrm{sec}\) is ......... rads \(^{-1}\)

1 27
2 17
3 15
4 16
Rotational Motion

269379 In the above problem, the angular acceleration of the particle at\(t=2 \mathrm{sec}\) is ......... rads \(^{-2}\)

1 14
2 16
3 18
4 24
Rotational Motion

269375 The linear velocity of a point on the surface of earth at a latitude of\(60^{\circ}\) is

1 \(\frac{800}{3} \mathrm{~m} / \mathrm{sec}\)
2 \(\frac{800 \pi}{3} \mathrm{~m} / \mathrm{sec}\)
3 \(800 \times \frac{5}{18} \mathrm{~m} / \mathrm{sec}\)
4 \(\frac{2000 \pi}{27} \mathrm{~m} / \mathrm{sec}\)
Rotational Motion

269376 A table fan, rotating at a speed of\(2400 \mathrm{rpm}\) is switched off and the resulting variation of the rpm with time is shown in the figure. The total number of revolutions of the fan before it comes to rest is

1 420
2 280
3 240
4 380
Rotational Motion

269377 The average angular velocity of the seconds hand of a watch if the seconds hand of the watch completes one revolution in 1 minute is

1 \(\frac{\pi}{15} \mathrm{rads}^{-1}\)
2 \(\frac{\pi}{30}\) rads \(^{-1}\)
3 \(\frac{\pi}{45} \mathrm{rads}^{-1}\)
4 \(\frac{\pi}{7}\) rads \(^{-1}\)
Rotational Motion

269378 The angular displacement of a particle is given by \(\theta=t^{3}+t^{2}+t+1\) then, its angular velocity at \(\mathbf{t}=2 \mathrm{sec}\) is ......... rads \(^{-1}\)

1 27
2 17
3 15
4 16