269283
If\(\vec{P} \times \vec{Q}=\vec{R} ; \vec{Q} \times \vec{R}=\vec{P}\) and \(\vec{R} \times \vec{P}=\vec{Q}\) then
1 \(\vec{P}, \vec{Q}\) and \(\vec{R}\) are coplanar
2 angle between\(\overrightarrow{\mathrm{P}}\) and \(\overrightarrow{\mathrm{Q}}\) may be less than \(90^{\circ}\)
3 \(\vec{P}+\vec{Q}+\vec{R}\) cannot be equal to zero.
4 \(\vec{P}, \vec{Q}\) and \(\vec{R}\) are mutually perpendicular
Explanation:
Rotational Motion
269372
The angular velocity of a rotating body is\(\vec{\omega}=4 \hat{i}+\hat{j}-2 \hat{k}\). The linear velocity of the body whose position vector \(2 \hat{i}+3 \hat{j}-3 \hat{k}\) is
1 \(5 \hat{i}+8 \hat{j}+14 \hat{k}\)
2 \(3 \hat{i}+8 \hat{j}+10 \hat{k}\)
3 \(8 \hat{i}-3 \hat{j}+2 \hat{k}\)
4 \(-8 \hat{i}+3 \hat{j}+2 \hat{k}\)
Explanation:
\(\vec{v}=\vec{\omega} \times \vec{r}\)
Rotational Motion
269373
The area of the triangle whose adjacent sides are represented by the vector\((4 \hat{i}+3 \hat{j}+4 \hat{k})\) and \(5 \hat{i}\) in sq. units is
1 25
2 12.5
3 50
4 45
Explanation:
Area of triangle\(=\frac{1}{2}|\vec{A} \times \vec{B}| \quad\)
Rotational Motion
269374
The angle between the vectors \((\hat{i}+\hat{j}+\hat{k})\) and \((\hat{i}-\hat{j}-\hat{k})\) is
269433
The position of a particle is given by \(\vec{r}=\hat{i}+2 \hat{j}-\hat{k}\) and its momentum is \(\vec{p}=3 \hat{i}+4 \hat{j}-2 \hat{k}\). The angular momentum is perpendicular to
269283
If\(\vec{P} \times \vec{Q}=\vec{R} ; \vec{Q} \times \vec{R}=\vec{P}\) and \(\vec{R} \times \vec{P}=\vec{Q}\) then
1 \(\vec{P}, \vec{Q}\) and \(\vec{R}\) are coplanar
2 angle between\(\overrightarrow{\mathrm{P}}\) and \(\overrightarrow{\mathrm{Q}}\) may be less than \(90^{\circ}\)
3 \(\vec{P}+\vec{Q}+\vec{R}\) cannot be equal to zero.
4 \(\vec{P}, \vec{Q}\) and \(\vec{R}\) are mutually perpendicular
Explanation:
Rotational Motion
269372
The angular velocity of a rotating body is\(\vec{\omega}=4 \hat{i}+\hat{j}-2 \hat{k}\). The linear velocity of the body whose position vector \(2 \hat{i}+3 \hat{j}-3 \hat{k}\) is
1 \(5 \hat{i}+8 \hat{j}+14 \hat{k}\)
2 \(3 \hat{i}+8 \hat{j}+10 \hat{k}\)
3 \(8 \hat{i}-3 \hat{j}+2 \hat{k}\)
4 \(-8 \hat{i}+3 \hat{j}+2 \hat{k}\)
Explanation:
\(\vec{v}=\vec{\omega} \times \vec{r}\)
Rotational Motion
269373
The area of the triangle whose adjacent sides are represented by the vector\((4 \hat{i}+3 \hat{j}+4 \hat{k})\) and \(5 \hat{i}\) in sq. units is
1 25
2 12.5
3 50
4 45
Explanation:
Area of triangle\(=\frac{1}{2}|\vec{A} \times \vec{B}| \quad\)
Rotational Motion
269374
The angle between the vectors \((\hat{i}+\hat{j}+\hat{k})\) and \((\hat{i}-\hat{j}-\hat{k})\) is
269433
The position of a particle is given by \(\vec{r}=\hat{i}+2 \hat{j}-\hat{k}\) and its momentum is \(\vec{p}=3 \hat{i}+4 \hat{j}-2 \hat{k}\). The angular momentum is perpendicular to
269283
If\(\vec{P} \times \vec{Q}=\vec{R} ; \vec{Q} \times \vec{R}=\vec{P}\) and \(\vec{R} \times \vec{P}=\vec{Q}\) then
1 \(\vec{P}, \vec{Q}\) and \(\vec{R}\) are coplanar
2 angle between\(\overrightarrow{\mathrm{P}}\) and \(\overrightarrow{\mathrm{Q}}\) may be less than \(90^{\circ}\)
3 \(\vec{P}+\vec{Q}+\vec{R}\) cannot be equal to zero.
4 \(\vec{P}, \vec{Q}\) and \(\vec{R}\) are mutually perpendicular
Explanation:
Rotational Motion
269372
The angular velocity of a rotating body is\(\vec{\omega}=4 \hat{i}+\hat{j}-2 \hat{k}\). The linear velocity of the body whose position vector \(2 \hat{i}+3 \hat{j}-3 \hat{k}\) is
1 \(5 \hat{i}+8 \hat{j}+14 \hat{k}\)
2 \(3 \hat{i}+8 \hat{j}+10 \hat{k}\)
3 \(8 \hat{i}-3 \hat{j}+2 \hat{k}\)
4 \(-8 \hat{i}+3 \hat{j}+2 \hat{k}\)
Explanation:
\(\vec{v}=\vec{\omega} \times \vec{r}\)
Rotational Motion
269373
The area of the triangle whose adjacent sides are represented by the vector\((4 \hat{i}+3 \hat{j}+4 \hat{k})\) and \(5 \hat{i}\) in sq. units is
1 25
2 12.5
3 50
4 45
Explanation:
Area of triangle\(=\frac{1}{2}|\vec{A} \times \vec{B}| \quad\)
Rotational Motion
269374
The angle between the vectors \((\hat{i}+\hat{j}+\hat{k})\) and \((\hat{i}-\hat{j}-\hat{k})\) is
269433
The position of a particle is given by \(\vec{r}=\hat{i}+2 \hat{j}-\hat{k}\) and its momentum is \(\vec{p}=3 \hat{i}+4 \hat{j}-2 \hat{k}\). The angular momentum is perpendicular to
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
Rotational Motion
269283
If\(\vec{P} \times \vec{Q}=\vec{R} ; \vec{Q} \times \vec{R}=\vec{P}\) and \(\vec{R} \times \vec{P}=\vec{Q}\) then
1 \(\vec{P}, \vec{Q}\) and \(\vec{R}\) are coplanar
2 angle between\(\overrightarrow{\mathrm{P}}\) and \(\overrightarrow{\mathrm{Q}}\) may be less than \(90^{\circ}\)
3 \(\vec{P}+\vec{Q}+\vec{R}\) cannot be equal to zero.
4 \(\vec{P}, \vec{Q}\) and \(\vec{R}\) are mutually perpendicular
Explanation:
Rotational Motion
269372
The angular velocity of a rotating body is\(\vec{\omega}=4 \hat{i}+\hat{j}-2 \hat{k}\). The linear velocity of the body whose position vector \(2 \hat{i}+3 \hat{j}-3 \hat{k}\) is
1 \(5 \hat{i}+8 \hat{j}+14 \hat{k}\)
2 \(3 \hat{i}+8 \hat{j}+10 \hat{k}\)
3 \(8 \hat{i}-3 \hat{j}+2 \hat{k}\)
4 \(-8 \hat{i}+3 \hat{j}+2 \hat{k}\)
Explanation:
\(\vec{v}=\vec{\omega} \times \vec{r}\)
Rotational Motion
269373
The area of the triangle whose adjacent sides are represented by the vector\((4 \hat{i}+3 \hat{j}+4 \hat{k})\) and \(5 \hat{i}\) in sq. units is
1 25
2 12.5
3 50
4 45
Explanation:
Area of triangle\(=\frac{1}{2}|\vec{A} \times \vec{B}| \quad\)
Rotational Motion
269374
The angle between the vectors \((\hat{i}+\hat{j}+\hat{k})\) and \((\hat{i}-\hat{j}-\hat{k})\) is
269433
The position of a particle is given by \(\vec{r}=\hat{i}+2 \hat{j}-\hat{k}\) and its momentum is \(\vec{p}=3 \hat{i}+4 \hat{j}-2 \hat{k}\). The angular momentum is perpendicular to
269283
If\(\vec{P} \times \vec{Q}=\vec{R} ; \vec{Q} \times \vec{R}=\vec{P}\) and \(\vec{R} \times \vec{P}=\vec{Q}\) then
1 \(\vec{P}, \vec{Q}\) and \(\vec{R}\) are coplanar
2 angle between\(\overrightarrow{\mathrm{P}}\) and \(\overrightarrow{\mathrm{Q}}\) may be less than \(90^{\circ}\)
3 \(\vec{P}+\vec{Q}+\vec{R}\) cannot be equal to zero.
4 \(\vec{P}, \vec{Q}\) and \(\vec{R}\) are mutually perpendicular
Explanation:
Rotational Motion
269372
The angular velocity of a rotating body is\(\vec{\omega}=4 \hat{i}+\hat{j}-2 \hat{k}\). The linear velocity of the body whose position vector \(2 \hat{i}+3 \hat{j}-3 \hat{k}\) is
1 \(5 \hat{i}+8 \hat{j}+14 \hat{k}\)
2 \(3 \hat{i}+8 \hat{j}+10 \hat{k}\)
3 \(8 \hat{i}-3 \hat{j}+2 \hat{k}\)
4 \(-8 \hat{i}+3 \hat{j}+2 \hat{k}\)
Explanation:
\(\vec{v}=\vec{\omega} \times \vec{r}\)
Rotational Motion
269373
The area of the triangle whose adjacent sides are represented by the vector\((4 \hat{i}+3 \hat{j}+4 \hat{k})\) and \(5 \hat{i}\) in sq. units is
1 25
2 12.5
3 50
4 45
Explanation:
Area of triangle\(=\frac{1}{2}|\vec{A} \times \vec{B}| \quad\)
Rotational Motion
269374
The angle between the vectors \((\hat{i}+\hat{j}+\hat{k})\) and \((\hat{i}-\hat{j}-\hat{k})\) is
269433
The position of a particle is given by \(\vec{r}=\hat{i}+2 \hat{j}-\hat{k}\) and its momentum is \(\vec{p}=3 \hat{i}+4 \hat{j}-2 \hat{k}\). The angular momentum is perpendicular to