TO CHECK THE CORRECTNESS OF PHYSICAL RELATIONAND DERIVING THE EQUATIONS
Units and Measurements

269154 The final velocity of a particle falling freely under gravity is given by\(V^{2}-u^{2}=2 g x\) where \(x\) is the distance covered. If \(v=18 \mathrm{kmph}\), \(\mathrm{g}=1000 \mathrm{~cm} \mathrm{~s}^{2}, \mathrm{x}=120 \mathrm{~cm}\) then \(\mathrm{u}=----\mathrm{ms}^{1}\).

1 2.4
2 1.2
3 1
4 0.1
Units and Measurements

269155 Theequation which is dimensionally correct among the following is

1 \(v=u+a t^{2}\)
2 \(s=ut+a t^{3}\)
3 \(s=ut+a t^{2}\)
4 \(t=s+a v\)
Units and Measurements

269156 The dimensions of ' \(\mathbf{k}\) ' in the relation \(\mathbf{V}=k\) avt (where \(\mathrm{V}\) is the volume of a liquid passing through any point in timet, ' \(a\) ' is area of cross section, \(v\) is the velocity of the liquid) is

1 \(\left[M^{1} L^{2} T^{-1}\right]\)
2 \(\left[M^{1} L^{1} T^{-1}\right]\)
3 \(\left[M^{0} L^{0} T^{-1}\right]\)
4 \(\left[M^{0} L^{0} T^{0}\right]\)
Units and Measurements

269157 If force (F), work (W) and velocity (V) are taken as fundamental quantities then the dimensional formula of Time( \(T\) ) is (2007 M )

1 \(\left[W^{1} F^{1} V^{1}\right]\)
2 \(\left[W^{1} F^{1} V^{-1}\right]\)
3 \(\left[W^{-1} F^{-1} V^{-1}\right]\)
4 \(\left[W^{1} F^{-1} V^{-1}\right]\)
Units and Measurements

269158 If Force\(F, M\) ass \(M\) and time \(T\) are chosen as fundamental quantities the dimensional formula for length, is

1 [FMT]
2 \(\left[\mathrm{F}^{-1} \mathrm{~L}^{-1} \mathrm{~T}^{-2}\right]\)
3 \(\left[\mathrm{F}^{-2} \mathrm{~L}^{-2} \mathrm{~T}^{-2}\right]\)
4 \(\left[F^1 L^{-1} T^2\right]\)
Units and Measurements

269154 The final velocity of a particle falling freely under gravity is given by\(V^{2}-u^{2}=2 g x\) where \(x\) is the distance covered. If \(v=18 \mathrm{kmph}\), \(\mathrm{g}=1000 \mathrm{~cm} \mathrm{~s}^{2}, \mathrm{x}=120 \mathrm{~cm}\) then \(\mathrm{u}=----\mathrm{ms}^{1}\).

1 2.4
2 1.2
3 1
4 0.1
Units and Measurements

269155 Theequation which is dimensionally correct among the following is

1 \(v=u+a t^{2}\)
2 \(s=ut+a t^{3}\)
3 \(s=ut+a t^{2}\)
4 \(t=s+a v\)
Units and Measurements

269156 The dimensions of ' \(\mathbf{k}\) ' in the relation \(\mathbf{V}=k\) avt (where \(\mathrm{V}\) is the volume of a liquid passing through any point in timet, ' \(a\) ' is area of cross section, \(v\) is the velocity of the liquid) is

1 \(\left[M^{1} L^{2} T^{-1}\right]\)
2 \(\left[M^{1} L^{1} T^{-1}\right]\)
3 \(\left[M^{0} L^{0} T^{-1}\right]\)
4 \(\left[M^{0} L^{0} T^{0}\right]\)
Units and Measurements

269157 If force (F), work (W) and velocity (V) are taken as fundamental quantities then the dimensional formula of Time( \(T\) ) is (2007 M )

1 \(\left[W^{1} F^{1} V^{1}\right]\)
2 \(\left[W^{1} F^{1} V^{-1}\right]\)
3 \(\left[W^{-1} F^{-1} V^{-1}\right]\)
4 \(\left[W^{1} F^{-1} V^{-1}\right]\)
Units and Measurements

269158 If Force\(F, M\) ass \(M\) and time \(T\) are chosen as fundamental quantities the dimensional formula for length, is

1 [FMT]
2 \(\left[\mathrm{F}^{-1} \mathrm{~L}^{-1} \mathrm{~T}^{-2}\right]\)
3 \(\left[\mathrm{F}^{-2} \mathrm{~L}^{-2} \mathrm{~T}^{-2}\right]\)
4 \(\left[F^1 L^{-1} T^2\right]\)
Units and Measurements

269154 The final velocity of a particle falling freely under gravity is given by\(V^{2}-u^{2}=2 g x\) where \(x\) is the distance covered. If \(v=18 \mathrm{kmph}\), \(\mathrm{g}=1000 \mathrm{~cm} \mathrm{~s}^{2}, \mathrm{x}=120 \mathrm{~cm}\) then \(\mathrm{u}=----\mathrm{ms}^{1}\).

1 2.4
2 1.2
3 1
4 0.1
Units and Measurements

269155 Theequation which is dimensionally correct among the following is

1 \(v=u+a t^{2}\)
2 \(s=ut+a t^{3}\)
3 \(s=ut+a t^{2}\)
4 \(t=s+a v\)
Units and Measurements

269156 The dimensions of ' \(\mathbf{k}\) ' in the relation \(\mathbf{V}=k\) avt (where \(\mathrm{V}\) is the volume of a liquid passing through any point in timet, ' \(a\) ' is area of cross section, \(v\) is the velocity of the liquid) is

1 \(\left[M^{1} L^{2} T^{-1}\right]\)
2 \(\left[M^{1} L^{1} T^{-1}\right]\)
3 \(\left[M^{0} L^{0} T^{-1}\right]\)
4 \(\left[M^{0} L^{0} T^{0}\right]\)
Units and Measurements

269157 If force (F), work (W) and velocity (V) are taken as fundamental quantities then the dimensional formula of Time( \(T\) ) is (2007 M )

1 \(\left[W^{1} F^{1} V^{1}\right]\)
2 \(\left[W^{1} F^{1} V^{-1}\right]\)
3 \(\left[W^{-1} F^{-1} V^{-1}\right]\)
4 \(\left[W^{1} F^{-1} V^{-1}\right]\)
Units and Measurements

269158 If Force\(F, M\) ass \(M\) and time \(T\) are chosen as fundamental quantities the dimensional formula for length, is

1 [FMT]
2 \(\left[\mathrm{F}^{-1} \mathrm{~L}^{-1} \mathrm{~T}^{-2}\right]\)
3 \(\left[\mathrm{F}^{-2} \mathrm{~L}^{-2} \mathrm{~T}^{-2}\right]\)
4 \(\left[F^1 L^{-1} T^2\right]\)
Units and Measurements

269154 The final velocity of a particle falling freely under gravity is given by\(V^{2}-u^{2}=2 g x\) where \(x\) is the distance covered. If \(v=18 \mathrm{kmph}\), \(\mathrm{g}=1000 \mathrm{~cm} \mathrm{~s}^{2}, \mathrm{x}=120 \mathrm{~cm}\) then \(\mathrm{u}=----\mathrm{ms}^{1}\).

1 2.4
2 1.2
3 1
4 0.1
Units and Measurements

269155 Theequation which is dimensionally correct among the following is

1 \(v=u+a t^{2}\)
2 \(s=ut+a t^{3}\)
3 \(s=ut+a t^{2}\)
4 \(t=s+a v\)
Units and Measurements

269156 The dimensions of ' \(\mathbf{k}\) ' in the relation \(\mathbf{V}=k\) avt (where \(\mathrm{V}\) is the volume of a liquid passing through any point in timet, ' \(a\) ' is area of cross section, \(v\) is the velocity of the liquid) is

1 \(\left[M^{1} L^{2} T^{-1}\right]\)
2 \(\left[M^{1} L^{1} T^{-1}\right]\)
3 \(\left[M^{0} L^{0} T^{-1}\right]\)
4 \(\left[M^{0} L^{0} T^{0}\right]\)
Units and Measurements

269157 If force (F), work (W) and velocity (V) are taken as fundamental quantities then the dimensional formula of Time( \(T\) ) is (2007 M )

1 \(\left[W^{1} F^{1} V^{1}\right]\)
2 \(\left[W^{1} F^{1} V^{-1}\right]\)
3 \(\left[W^{-1} F^{-1} V^{-1}\right]\)
4 \(\left[W^{1} F^{-1} V^{-1}\right]\)
Units and Measurements

269158 If Force\(F, M\) ass \(M\) and time \(T\) are chosen as fundamental quantities the dimensional formula for length, is

1 [FMT]
2 \(\left[\mathrm{F}^{-1} \mathrm{~L}^{-1} \mathrm{~T}^{-2}\right]\)
3 \(\left[\mathrm{F}^{-2} \mathrm{~L}^{-2} \mathrm{~T}^{-2}\right]\)
4 \(\left[F^1 L^{-1} T^2\right]\)
Units and Measurements

269154 The final velocity of a particle falling freely under gravity is given by\(V^{2}-u^{2}=2 g x\) where \(x\) is the distance covered. If \(v=18 \mathrm{kmph}\), \(\mathrm{g}=1000 \mathrm{~cm} \mathrm{~s}^{2}, \mathrm{x}=120 \mathrm{~cm}\) then \(\mathrm{u}=----\mathrm{ms}^{1}\).

1 2.4
2 1.2
3 1
4 0.1
Units and Measurements

269155 Theequation which is dimensionally correct among the following is

1 \(v=u+a t^{2}\)
2 \(s=ut+a t^{3}\)
3 \(s=ut+a t^{2}\)
4 \(t=s+a v\)
Units and Measurements

269156 The dimensions of ' \(\mathbf{k}\) ' in the relation \(\mathbf{V}=k\) avt (where \(\mathrm{V}\) is the volume of a liquid passing through any point in timet, ' \(a\) ' is area of cross section, \(v\) is the velocity of the liquid) is

1 \(\left[M^{1} L^{2} T^{-1}\right]\)
2 \(\left[M^{1} L^{1} T^{-1}\right]\)
3 \(\left[M^{0} L^{0} T^{-1}\right]\)
4 \(\left[M^{0} L^{0} T^{0}\right]\)
Units and Measurements

269157 If force (F), work (W) and velocity (V) are taken as fundamental quantities then the dimensional formula of Time( \(T\) ) is (2007 M )

1 \(\left[W^{1} F^{1} V^{1}\right]\)
2 \(\left[W^{1} F^{1} V^{-1}\right]\)
3 \(\left[W^{-1} F^{-1} V^{-1}\right]\)
4 \(\left[W^{1} F^{-1} V^{-1}\right]\)
Units and Measurements

269158 If Force\(F, M\) ass \(M\) and time \(T\) are chosen as fundamental quantities the dimensional formula for length, is

1 [FMT]
2 \(\left[\mathrm{F}^{-1} \mathrm{~L}^{-1} \mathrm{~T}^{-2}\right]\)
3 \(\left[\mathrm{F}^{-2} \mathrm{~L}^{-2} \mathrm{~T}^{-2}\right]\)
4 \(\left[F^1 L^{-1} T^2\right]\)