269196
Taking frequency f, velocity (v) and Density( \(\rho\) ) to be the fundamental quantities then the Dimensional formula for momentum will be
1 \(\left(\rho v^{4} f^{-3}\right)\)
2 \(\left(\rho v^{3} f^{-1}\right)\)
3 \(\left(\rho v f^{2}\right)\)
4 \(\left(\rho^{2} v^{2} f^{2}\right)\)
Explanation:
\(P \propto f^{a} v^{b} \rho^{c} ; M L T^{-1}=k\left[T^{-1}\right]^{a}\left[L T^{-1}\right]^{b}\left[M L^{-3}\right]^{c}\)
Units and Measurements
269197
If momentum ( \(p\) ), \(M\) ass ( \(M\) ), Time ( \(T\) ) are chosen as fundamental quantities then the dimensional formula for length is
1 \(\left(P^{1} T^{1} M^{1}\right)\)
2 \(\left(P^{1} T^{1} M^{2}\right)\)
3 \(\left(P^{1} T^{1} M^{-1}\right)\)
4 \(\left(P^{2} T^{2} M^{1}\right)\)
Explanation:
\(L \propto(P)^{a}(M)^{b}(T)^{c}\)
Units and Measurements
269198
If pressure \((P)\), velocity \((V)\) and time \((T)\) are taken asthefundamental quantities, then the dimensional formula of force is
1 \(\left[P^{1} V^{1} T^{1}\right]\)
2 \(\left[P^{1} V^{2} T^{1}\right]\)
3 \(\left[P^{1} V^{1} T^{2}\right]\)
4 \(\left[P^{1} V^{2} T^{2}\right]\)
Explanation:
\(F \propto P^{a} V^{b} T^{c}\)
Units and Measurements
269210
The work done '\(w\) ' by a body varies with displacement ' \(x\) ' as \(w=A x+\frac{B}{(C-x)^{2}}\). The dimensional formula for ' \(B\) ' is
1 \(\left[M L^{2} T^{-2}\right]\)
2 \(\left[M L^{4} T^{-2}\right]\)
3 \(\left[M L T^{-2}\right]\)
4 \(\left[M L^{2} T^{-4}\right]\)
Explanation:
Units and Measurements
269265
In the relation \(P=\frac{\alpha}{\beta} e^{-\alpha z / K \theta} ; \mathbf{P}\) is pressure, \(\mathrm{K}\) is Boltzmann's constant, \(\mathbf{Z}\) is distance and \(\theta\) is temperature. The dimensional formula of \(\beta\) will be
269196
Taking frequency f, velocity (v) and Density( \(\rho\) ) to be the fundamental quantities then the Dimensional formula for momentum will be
1 \(\left(\rho v^{4} f^{-3}\right)\)
2 \(\left(\rho v^{3} f^{-1}\right)\)
3 \(\left(\rho v f^{2}\right)\)
4 \(\left(\rho^{2} v^{2} f^{2}\right)\)
Explanation:
\(P \propto f^{a} v^{b} \rho^{c} ; M L T^{-1}=k\left[T^{-1}\right]^{a}\left[L T^{-1}\right]^{b}\left[M L^{-3}\right]^{c}\)
Units and Measurements
269197
If momentum ( \(p\) ), \(M\) ass ( \(M\) ), Time ( \(T\) ) are chosen as fundamental quantities then the dimensional formula for length is
1 \(\left(P^{1} T^{1} M^{1}\right)\)
2 \(\left(P^{1} T^{1} M^{2}\right)\)
3 \(\left(P^{1} T^{1} M^{-1}\right)\)
4 \(\left(P^{2} T^{2} M^{1}\right)\)
Explanation:
\(L \propto(P)^{a}(M)^{b}(T)^{c}\)
Units and Measurements
269198
If pressure \((P)\), velocity \((V)\) and time \((T)\) are taken asthefundamental quantities, then the dimensional formula of force is
1 \(\left[P^{1} V^{1} T^{1}\right]\)
2 \(\left[P^{1} V^{2} T^{1}\right]\)
3 \(\left[P^{1} V^{1} T^{2}\right]\)
4 \(\left[P^{1} V^{2} T^{2}\right]\)
Explanation:
\(F \propto P^{a} V^{b} T^{c}\)
Units and Measurements
269210
The work done '\(w\) ' by a body varies with displacement ' \(x\) ' as \(w=A x+\frac{B}{(C-x)^{2}}\). The dimensional formula for ' \(B\) ' is
1 \(\left[M L^{2} T^{-2}\right]\)
2 \(\left[M L^{4} T^{-2}\right]\)
3 \(\left[M L T^{-2}\right]\)
4 \(\left[M L^{2} T^{-4}\right]\)
Explanation:
Units and Measurements
269265
In the relation \(P=\frac{\alpha}{\beta} e^{-\alpha z / K \theta} ; \mathbf{P}\) is pressure, \(\mathrm{K}\) is Boltzmann's constant, \(\mathbf{Z}\) is distance and \(\theta\) is temperature. The dimensional formula of \(\beta\) will be
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
Units and Measurements
269196
Taking frequency f, velocity (v) and Density( \(\rho\) ) to be the fundamental quantities then the Dimensional formula for momentum will be
1 \(\left(\rho v^{4} f^{-3}\right)\)
2 \(\left(\rho v^{3} f^{-1}\right)\)
3 \(\left(\rho v f^{2}\right)\)
4 \(\left(\rho^{2} v^{2} f^{2}\right)\)
Explanation:
\(P \propto f^{a} v^{b} \rho^{c} ; M L T^{-1}=k\left[T^{-1}\right]^{a}\left[L T^{-1}\right]^{b}\left[M L^{-3}\right]^{c}\)
Units and Measurements
269197
If momentum ( \(p\) ), \(M\) ass ( \(M\) ), Time ( \(T\) ) are chosen as fundamental quantities then the dimensional formula for length is
1 \(\left(P^{1} T^{1} M^{1}\right)\)
2 \(\left(P^{1} T^{1} M^{2}\right)\)
3 \(\left(P^{1} T^{1} M^{-1}\right)\)
4 \(\left(P^{2} T^{2} M^{1}\right)\)
Explanation:
\(L \propto(P)^{a}(M)^{b}(T)^{c}\)
Units and Measurements
269198
If pressure \((P)\), velocity \((V)\) and time \((T)\) are taken asthefundamental quantities, then the dimensional formula of force is
1 \(\left[P^{1} V^{1} T^{1}\right]\)
2 \(\left[P^{1} V^{2} T^{1}\right]\)
3 \(\left[P^{1} V^{1} T^{2}\right]\)
4 \(\left[P^{1} V^{2} T^{2}\right]\)
Explanation:
\(F \propto P^{a} V^{b} T^{c}\)
Units and Measurements
269210
The work done '\(w\) ' by a body varies with displacement ' \(x\) ' as \(w=A x+\frac{B}{(C-x)^{2}}\). The dimensional formula for ' \(B\) ' is
1 \(\left[M L^{2} T^{-2}\right]\)
2 \(\left[M L^{4} T^{-2}\right]\)
3 \(\left[M L T^{-2}\right]\)
4 \(\left[M L^{2} T^{-4}\right]\)
Explanation:
Units and Measurements
269265
In the relation \(P=\frac{\alpha}{\beta} e^{-\alpha z / K \theta} ; \mathbf{P}\) is pressure, \(\mathrm{K}\) is Boltzmann's constant, \(\mathbf{Z}\) is distance and \(\theta\) is temperature. The dimensional formula of \(\beta\) will be
269196
Taking frequency f, velocity (v) and Density( \(\rho\) ) to be the fundamental quantities then the Dimensional formula for momentum will be
1 \(\left(\rho v^{4} f^{-3}\right)\)
2 \(\left(\rho v^{3} f^{-1}\right)\)
3 \(\left(\rho v f^{2}\right)\)
4 \(\left(\rho^{2} v^{2} f^{2}\right)\)
Explanation:
\(P \propto f^{a} v^{b} \rho^{c} ; M L T^{-1}=k\left[T^{-1}\right]^{a}\left[L T^{-1}\right]^{b}\left[M L^{-3}\right]^{c}\)
Units and Measurements
269197
If momentum ( \(p\) ), \(M\) ass ( \(M\) ), Time ( \(T\) ) are chosen as fundamental quantities then the dimensional formula for length is
1 \(\left(P^{1} T^{1} M^{1}\right)\)
2 \(\left(P^{1} T^{1} M^{2}\right)\)
3 \(\left(P^{1} T^{1} M^{-1}\right)\)
4 \(\left(P^{2} T^{2} M^{1}\right)\)
Explanation:
\(L \propto(P)^{a}(M)^{b}(T)^{c}\)
Units and Measurements
269198
If pressure \((P)\), velocity \((V)\) and time \((T)\) are taken asthefundamental quantities, then the dimensional formula of force is
1 \(\left[P^{1} V^{1} T^{1}\right]\)
2 \(\left[P^{1} V^{2} T^{1}\right]\)
3 \(\left[P^{1} V^{1} T^{2}\right]\)
4 \(\left[P^{1} V^{2} T^{2}\right]\)
Explanation:
\(F \propto P^{a} V^{b} T^{c}\)
Units and Measurements
269210
The work done '\(w\) ' by a body varies with displacement ' \(x\) ' as \(w=A x+\frac{B}{(C-x)^{2}}\). The dimensional formula for ' \(B\) ' is
1 \(\left[M L^{2} T^{-2}\right]\)
2 \(\left[M L^{4} T^{-2}\right]\)
3 \(\left[M L T^{-2}\right]\)
4 \(\left[M L^{2} T^{-4}\right]\)
Explanation:
Units and Measurements
269265
In the relation \(P=\frac{\alpha}{\beta} e^{-\alpha z / K \theta} ; \mathbf{P}\) is pressure, \(\mathrm{K}\) is Boltzmann's constant, \(\mathbf{Z}\) is distance and \(\theta\) is temperature. The dimensional formula of \(\beta\) will be
269196
Taking frequency f, velocity (v) and Density( \(\rho\) ) to be the fundamental quantities then the Dimensional formula for momentum will be
1 \(\left(\rho v^{4} f^{-3}\right)\)
2 \(\left(\rho v^{3} f^{-1}\right)\)
3 \(\left(\rho v f^{2}\right)\)
4 \(\left(\rho^{2} v^{2} f^{2}\right)\)
Explanation:
\(P \propto f^{a} v^{b} \rho^{c} ; M L T^{-1}=k\left[T^{-1}\right]^{a}\left[L T^{-1}\right]^{b}\left[M L^{-3}\right]^{c}\)
Units and Measurements
269197
If momentum ( \(p\) ), \(M\) ass ( \(M\) ), Time ( \(T\) ) are chosen as fundamental quantities then the dimensional formula for length is
1 \(\left(P^{1} T^{1} M^{1}\right)\)
2 \(\left(P^{1} T^{1} M^{2}\right)\)
3 \(\left(P^{1} T^{1} M^{-1}\right)\)
4 \(\left(P^{2} T^{2} M^{1}\right)\)
Explanation:
\(L \propto(P)^{a}(M)^{b}(T)^{c}\)
Units and Measurements
269198
If pressure \((P)\), velocity \((V)\) and time \((T)\) are taken asthefundamental quantities, then the dimensional formula of force is
1 \(\left[P^{1} V^{1} T^{1}\right]\)
2 \(\left[P^{1} V^{2} T^{1}\right]\)
3 \(\left[P^{1} V^{1} T^{2}\right]\)
4 \(\left[P^{1} V^{2} T^{2}\right]\)
Explanation:
\(F \propto P^{a} V^{b} T^{c}\)
Units and Measurements
269210
The work done '\(w\) ' by a body varies with displacement ' \(x\) ' as \(w=A x+\frac{B}{(C-x)^{2}}\). The dimensional formula for ' \(B\) ' is
1 \(\left[M L^{2} T^{-2}\right]\)
2 \(\left[M L^{4} T^{-2}\right]\)
3 \(\left[M L T^{-2}\right]\)
4 \(\left[M L^{2} T^{-4}\right]\)
Explanation:
Units and Measurements
269265
In the relation \(P=\frac{\alpha}{\beta} e^{-\alpha z / K \theta} ; \mathbf{P}\) is pressure, \(\mathrm{K}\) is Boltzmann's constant, \(\mathbf{Z}\) is distance and \(\theta\) is temperature. The dimensional formula of \(\beta\) will be