PRINCIPLE OF HOMOGENEITY
Units and Measurements

269196 Taking frequency f, velocity (v) and Density( \(\rho\) ) to be the fundamental quantities then the Dimensional formula for momentum will be

1 \(\left(\rho v^{4} f^{-3}\right)\)
2 \(\left(\rho v^{3} f^{-1}\right)\)
3 \(\left(\rho v f^{2}\right)\)
4 \(\left(\rho^{2} v^{2} f^{2}\right)\)
Units and Measurements

269197 If momentum ( \(p\) ), \(M\) ass ( \(M\) ), Time ( \(T\) ) are chosen as fundamental quantities then the dimensional formula for length is

1 \(\left(P^{1} T^{1} M^{1}\right)\)
2 \(\left(P^{1} T^{1} M^{2}\right)\)
3 \(\left(P^{1} T^{1} M^{-1}\right)\)
4 \(\left(P^{2} T^{2} M^{1}\right)\)
Units and Measurements

269198 If pressure \((P)\), velocity \((V)\) and time \((T)\) are taken asthefundamental quantities, then the dimensional formula of force is

1 \(\left[P^{1} V^{1} T^{1}\right]\)
2 \(\left[P^{1} V^{2} T^{1}\right]\)
3 \(\left[P^{1} V^{1} T^{2}\right]\)
4 \(\left[P^{1} V^{2} T^{2}\right]\)
Units and Measurements

269210 The work done '\(w\) ' by a body varies with displacement ' \(x\) ' as \(w=A x+\frac{B}{(C-x)^{2}}\). The dimensional formula for ' \(B\) ' is

1 \(\left[M L^{2} T^{-2}\right]\)
2 \(\left[M L^{4} T^{-2}\right]\)
3 \(\left[M L T^{-2}\right]\)
4 \(\left[M L^{2} T^{-4}\right]\)
Units and Measurements

269265 In the relation \(P=\frac{\alpha}{\beta} e^{-\alpha z / K \theta} ; \mathbf{P}\) is pressure, \(\mathrm{K}\) is Boltzmann's constant, \(\mathbf{Z}\) is distance and \(\theta\) is temperature. The dimensional formula of \(\beta\) will be

1 \(\left[M^{0} L^{2} T^{0}\right]\)
2 \(\left[M^{1} L^{2} T^{1}\right]\)
3 \(\left[M L^{0} T^{-1}\right]\)
4 \(\left[M^{0} L^{2} T^{-1}\right]\)
Units and Measurements

269196 Taking frequency f, velocity (v) and Density( \(\rho\) ) to be the fundamental quantities then the Dimensional formula for momentum will be

1 \(\left(\rho v^{4} f^{-3}\right)\)
2 \(\left(\rho v^{3} f^{-1}\right)\)
3 \(\left(\rho v f^{2}\right)\)
4 \(\left(\rho^{2} v^{2} f^{2}\right)\)
Units and Measurements

269197 If momentum ( \(p\) ), \(M\) ass ( \(M\) ), Time ( \(T\) ) are chosen as fundamental quantities then the dimensional formula for length is

1 \(\left(P^{1} T^{1} M^{1}\right)\)
2 \(\left(P^{1} T^{1} M^{2}\right)\)
3 \(\left(P^{1} T^{1} M^{-1}\right)\)
4 \(\left(P^{2} T^{2} M^{1}\right)\)
Units and Measurements

269198 If pressure \((P)\), velocity \((V)\) and time \((T)\) are taken asthefundamental quantities, then the dimensional formula of force is

1 \(\left[P^{1} V^{1} T^{1}\right]\)
2 \(\left[P^{1} V^{2} T^{1}\right]\)
3 \(\left[P^{1} V^{1} T^{2}\right]\)
4 \(\left[P^{1} V^{2} T^{2}\right]\)
Units and Measurements

269210 The work done '\(w\) ' by a body varies with displacement ' \(x\) ' as \(w=A x+\frac{B}{(C-x)^{2}}\). The dimensional formula for ' \(B\) ' is

1 \(\left[M L^{2} T^{-2}\right]\)
2 \(\left[M L^{4} T^{-2}\right]\)
3 \(\left[M L T^{-2}\right]\)
4 \(\left[M L^{2} T^{-4}\right]\)
Units and Measurements

269265 In the relation \(P=\frac{\alpha}{\beta} e^{-\alpha z / K \theta} ; \mathbf{P}\) is pressure, \(\mathrm{K}\) is Boltzmann's constant, \(\mathbf{Z}\) is distance and \(\theta\) is temperature. The dimensional formula of \(\beta\) will be

1 \(\left[M^{0} L^{2} T^{0}\right]\)
2 \(\left[M^{1} L^{2} T^{1}\right]\)
3 \(\left[M L^{0} T^{-1}\right]\)
4 \(\left[M^{0} L^{2} T^{-1}\right]\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Units and Measurements

269196 Taking frequency f, velocity (v) and Density( \(\rho\) ) to be the fundamental quantities then the Dimensional formula for momentum will be

1 \(\left(\rho v^{4} f^{-3}\right)\)
2 \(\left(\rho v^{3} f^{-1}\right)\)
3 \(\left(\rho v f^{2}\right)\)
4 \(\left(\rho^{2} v^{2} f^{2}\right)\)
Units and Measurements

269197 If momentum ( \(p\) ), \(M\) ass ( \(M\) ), Time ( \(T\) ) are chosen as fundamental quantities then the dimensional formula for length is

1 \(\left(P^{1} T^{1} M^{1}\right)\)
2 \(\left(P^{1} T^{1} M^{2}\right)\)
3 \(\left(P^{1} T^{1} M^{-1}\right)\)
4 \(\left(P^{2} T^{2} M^{1}\right)\)
Units and Measurements

269198 If pressure \((P)\), velocity \((V)\) and time \((T)\) are taken asthefundamental quantities, then the dimensional formula of force is

1 \(\left[P^{1} V^{1} T^{1}\right]\)
2 \(\left[P^{1} V^{2} T^{1}\right]\)
3 \(\left[P^{1} V^{1} T^{2}\right]\)
4 \(\left[P^{1} V^{2} T^{2}\right]\)
Units and Measurements

269210 The work done '\(w\) ' by a body varies with displacement ' \(x\) ' as \(w=A x+\frac{B}{(C-x)^{2}}\). The dimensional formula for ' \(B\) ' is

1 \(\left[M L^{2} T^{-2}\right]\)
2 \(\left[M L^{4} T^{-2}\right]\)
3 \(\left[M L T^{-2}\right]\)
4 \(\left[M L^{2} T^{-4}\right]\)
Units and Measurements

269265 In the relation \(P=\frac{\alpha}{\beta} e^{-\alpha z / K \theta} ; \mathbf{P}\) is pressure, \(\mathrm{K}\) is Boltzmann's constant, \(\mathbf{Z}\) is distance and \(\theta\) is temperature. The dimensional formula of \(\beta\) will be

1 \(\left[M^{0} L^{2} T^{0}\right]\)
2 \(\left[M^{1} L^{2} T^{1}\right]\)
3 \(\left[M L^{0} T^{-1}\right]\)
4 \(\left[M^{0} L^{2} T^{-1}\right]\)
Units and Measurements

269196 Taking frequency f, velocity (v) and Density( \(\rho\) ) to be the fundamental quantities then the Dimensional formula for momentum will be

1 \(\left(\rho v^{4} f^{-3}\right)\)
2 \(\left(\rho v^{3} f^{-1}\right)\)
3 \(\left(\rho v f^{2}\right)\)
4 \(\left(\rho^{2} v^{2} f^{2}\right)\)
Units and Measurements

269197 If momentum ( \(p\) ), \(M\) ass ( \(M\) ), Time ( \(T\) ) are chosen as fundamental quantities then the dimensional formula for length is

1 \(\left(P^{1} T^{1} M^{1}\right)\)
2 \(\left(P^{1} T^{1} M^{2}\right)\)
3 \(\left(P^{1} T^{1} M^{-1}\right)\)
4 \(\left(P^{2} T^{2} M^{1}\right)\)
Units and Measurements

269198 If pressure \((P)\), velocity \((V)\) and time \((T)\) are taken asthefundamental quantities, then the dimensional formula of force is

1 \(\left[P^{1} V^{1} T^{1}\right]\)
2 \(\left[P^{1} V^{2} T^{1}\right]\)
3 \(\left[P^{1} V^{1} T^{2}\right]\)
4 \(\left[P^{1} V^{2} T^{2}\right]\)
Units and Measurements

269210 The work done '\(w\) ' by a body varies with displacement ' \(x\) ' as \(w=A x+\frac{B}{(C-x)^{2}}\). The dimensional formula for ' \(B\) ' is

1 \(\left[M L^{2} T^{-2}\right]\)
2 \(\left[M L^{4} T^{-2}\right]\)
3 \(\left[M L T^{-2}\right]\)
4 \(\left[M L^{2} T^{-4}\right]\)
Units and Measurements

269265 In the relation \(P=\frac{\alpha}{\beta} e^{-\alpha z / K \theta} ; \mathbf{P}\) is pressure, \(\mathrm{K}\) is Boltzmann's constant, \(\mathbf{Z}\) is distance and \(\theta\) is temperature. The dimensional formula of \(\beta\) will be

1 \(\left[M^{0} L^{2} T^{0}\right]\)
2 \(\left[M^{1} L^{2} T^{1}\right]\)
3 \(\left[M L^{0} T^{-1}\right]\)
4 \(\left[M^{0} L^{2} T^{-1}\right]\)
Units and Measurements

269196 Taking frequency f, velocity (v) and Density( \(\rho\) ) to be the fundamental quantities then the Dimensional formula for momentum will be

1 \(\left(\rho v^{4} f^{-3}\right)\)
2 \(\left(\rho v^{3} f^{-1}\right)\)
3 \(\left(\rho v f^{2}\right)\)
4 \(\left(\rho^{2} v^{2} f^{2}\right)\)
Units and Measurements

269197 If momentum ( \(p\) ), \(M\) ass ( \(M\) ), Time ( \(T\) ) are chosen as fundamental quantities then the dimensional formula for length is

1 \(\left(P^{1} T^{1} M^{1}\right)\)
2 \(\left(P^{1} T^{1} M^{2}\right)\)
3 \(\left(P^{1} T^{1} M^{-1}\right)\)
4 \(\left(P^{2} T^{2} M^{1}\right)\)
Units and Measurements

269198 If pressure \((P)\), velocity \((V)\) and time \((T)\) are taken asthefundamental quantities, then the dimensional formula of force is

1 \(\left[P^{1} V^{1} T^{1}\right]\)
2 \(\left[P^{1} V^{2} T^{1}\right]\)
3 \(\left[P^{1} V^{1} T^{2}\right]\)
4 \(\left[P^{1} V^{2} T^{2}\right]\)
Units and Measurements

269210 The work done '\(w\) ' by a body varies with displacement ' \(x\) ' as \(w=A x+\frac{B}{(C-x)^{2}}\). The dimensional formula for ' \(B\) ' is

1 \(\left[M L^{2} T^{-2}\right]\)
2 \(\left[M L^{4} T^{-2}\right]\)
3 \(\left[M L T^{-2}\right]\)
4 \(\left[M L^{2} T^{-4}\right]\)
Units and Measurements

269265 In the relation \(P=\frac{\alpha}{\beta} e^{-\alpha z / K \theta} ; \mathbf{P}\) is pressure, \(\mathrm{K}\) is Boltzmann's constant, \(\mathbf{Z}\) is distance and \(\theta\) is temperature. The dimensional formula of \(\beta\) will be

1 \(\left[M^{0} L^{2} T^{0}\right]\)
2 \(\left[M^{1} L^{2} T^{1}\right]\)
3 \(\left[M L^{0} T^{-1}\right]\)
4 \(\left[M^{0} L^{2} T^{-1}\right]\)