ACCURACY,PRECISION,TYPESOF ERRORSAND COM BINATION OF ERRORS
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Units and Measurements

269238 Hydrostatic pressure ' \(P\) ' varies with displacement ' \(x\) ' as \(P=\frac{A}{B} \log \left(B x^{2}+C\right)\) where \(A, B\) and \(C\) are constants. The dimensional formula for ' \(A\) ' is

1 \(\left[M^{1} L^{-1} T^{-2}\right]\)
2 \(\left[M L T^{-2}\right]\)
3 \(\left[M L^{-2} T^{-2}\right]\)
4 \(\left[M L^{-3} T^{-2}\right]\)
Units and Measurements

269239 The units of force, velocity and energy are 100 dyne,\(10 \mathrm{~cm} \mathrm{~s}^{1}\) and 500 erg respectively. The units of mass, length and time are

1 \(5 \mathrm{~g}, 5 \mathrm{~cm}, 5 \mathrm{~s}\)
2 \(5 \mathrm{~g}, 5 \mathrm{~cm}, 0.5 \mathrm{~s}\)
3 \(0.5 \mathrm{~g}, 5 \mathrm{~cm}, 5 \mathrm{~s}\)
4 \(5 \mathrm{~g}, 0.5 \mathrm{~cm}, 5 \mathrm{~s}\)
Units and Measurements

269240 The ratio of SI unit to \(C G S\) unit of gravitational constant is

1 \(1: 10^{3}\)
2 \(10^{3}: 1\)
3 \(1: 1\)
4 \(1: 10^{7}\)
Units and Measurements

269241 The frequency \(f\) of vibrations of a mass \(m\) suspended from a spring of spring constant \(k\) is given by \(f=C m^{x} K^{y}\), where \(\mathbf{C}\) is a dimensionless constant. The values of \(x\) and \(y\) are, respectively.

1 \(\frac{1}{2}, \frac{1}{2}\)
2 \(-\frac{1}{2},-\frac{1}{2}\)
3 \(\frac{1}{2},-\frac{1}{2}\)
4 \(-\frac{1}{2}, \frac{1}{2}\)
Units and Measurements

269238 Hydrostatic pressure ' \(P\) ' varies with displacement ' \(x\) ' as \(P=\frac{A}{B} \log \left(B x^{2}+C\right)\) where \(A, B\) and \(C\) are constants. The dimensional formula for ' \(A\) ' is

1 \(\left[M^{1} L^{-1} T^{-2}\right]\)
2 \(\left[M L T^{-2}\right]\)
3 \(\left[M L^{-2} T^{-2}\right]\)
4 \(\left[M L^{-3} T^{-2}\right]\)
Units and Measurements

269239 The units of force, velocity and energy are 100 dyne,\(10 \mathrm{~cm} \mathrm{~s}^{1}\) and 500 erg respectively. The units of mass, length and time are

1 \(5 \mathrm{~g}, 5 \mathrm{~cm}, 5 \mathrm{~s}\)
2 \(5 \mathrm{~g}, 5 \mathrm{~cm}, 0.5 \mathrm{~s}\)
3 \(0.5 \mathrm{~g}, 5 \mathrm{~cm}, 5 \mathrm{~s}\)
4 \(5 \mathrm{~g}, 0.5 \mathrm{~cm}, 5 \mathrm{~s}\)
Units and Measurements

269240 The ratio of SI unit to \(C G S\) unit of gravitational constant is

1 \(1: 10^{3}\)
2 \(10^{3}: 1\)
3 \(1: 1\)
4 \(1: 10^{7}\)
Units and Measurements

269241 The frequency \(f\) of vibrations of a mass \(m\) suspended from a spring of spring constant \(k\) is given by \(f=C m^{x} K^{y}\), where \(\mathbf{C}\) is a dimensionless constant. The values of \(x\) and \(y\) are, respectively.

1 \(\frac{1}{2}, \frac{1}{2}\)
2 \(-\frac{1}{2},-\frac{1}{2}\)
3 \(\frac{1}{2},-\frac{1}{2}\)
4 \(-\frac{1}{2}, \frac{1}{2}\)
Units and Measurements

269238 Hydrostatic pressure ' \(P\) ' varies with displacement ' \(x\) ' as \(P=\frac{A}{B} \log \left(B x^{2}+C\right)\) where \(A, B\) and \(C\) are constants. The dimensional formula for ' \(A\) ' is

1 \(\left[M^{1} L^{-1} T^{-2}\right]\)
2 \(\left[M L T^{-2}\right]\)
3 \(\left[M L^{-2} T^{-2}\right]\)
4 \(\left[M L^{-3} T^{-2}\right]\)
Units and Measurements

269239 The units of force, velocity and energy are 100 dyne,\(10 \mathrm{~cm} \mathrm{~s}^{1}\) and 500 erg respectively. The units of mass, length and time are

1 \(5 \mathrm{~g}, 5 \mathrm{~cm}, 5 \mathrm{~s}\)
2 \(5 \mathrm{~g}, 5 \mathrm{~cm}, 0.5 \mathrm{~s}\)
3 \(0.5 \mathrm{~g}, 5 \mathrm{~cm}, 5 \mathrm{~s}\)
4 \(5 \mathrm{~g}, 0.5 \mathrm{~cm}, 5 \mathrm{~s}\)
Units and Measurements

269240 The ratio of SI unit to \(C G S\) unit of gravitational constant is

1 \(1: 10^{3}\)
2 \(10^{3}: 1\)
3 \(1: 1\)
4 \(1: 10^{7}\)
Units and Measurements

269241 The frequency \(f\) of vibrations of a mass \(m\) suspended from a spring of spring constant \(k\) is given by \(f=C m^{x} K^{y}\), where \(\mathbf{C}\) is a dimensionless constant. The values of \(x\) and \(y\) are, respectively.

1 \(\frac{1}{2}, \frac{1}{2}\)
2 \(-\frac{1}{2},-\frac{1}{2}\)
3 \(\frac{1}{2},-\frac{1}{2}\)
4 \(-\frac{1}{2}, \frac{1}{2}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Units and Measurements

269238 Hydrostatic pressure ' \(P\) ' varies with displacement ' \(x\) ' as \(P=\frac{A}{B} \log \left(B x^{2}+C\right)\) where \(A, B\) and \(C\) are constants. The dimensional formula for ' \(A\) ' is

1 \(\left[M^{1} L^{-1} T^{-2}\right]\)
2 \(\left[M L T^{-2}\right]\)
3 \(\left[M L^{-2} T^{-2}\right]\)
4 \(\left[M L^{-3} T^{-2}\right]\)
Units and Measurements

269239 The units of force, velocity and energy are 100 dyne,\(10 \mathrm{~cm} \mathrm{~s}^{1}\) and 500 erg respectively. The units of mass, length and time are

1 \(5 \mathrm{~g}, 5 \mathrm{~cm}, 5 \mathrm{~s}\)
2 \(5 \mathrm{~g}, 5 \mathrm{~cm}, 0.5 \mathrm{~s}\)
3 \(0.5 \mathrm{~g}, 5 \mathrm{~cm}, 5 \mathrm{~s}\)
4 \(5 \mathrm{~g}, 0.5 \mathrm{~cm}, 5 \mathrm{~s}\)
Units and Measurements

269240 The ratio of SI unit to \(C G S\) unit of gravitational constant is

1 \(1: 10^{3}\)
2 \(10^{3}: 1\)
3 \(1: 1\)
4 \(1: 10^{7}\)
Units and Measurements

269241 The frequency \(f\) of vibrations of a mass \(m\) suspended from a spring of spring constant \(k\) is given by \(f=C m^{x} K^{y}\), where \(\mathbf{C}\) is a dimensionless constant. The values of \(x\) and \(y\) are, respectively.

1 \(\frac{1}{2}, \frac{1}{2}\)
2 \(-\frac{1}{2},-\frac{1}{2}\)
3 \(\frac{1}{2},-\frac{1}{2}\)
4 \(-\frac{1}{2}, \frac{1}{2}\)