268982
Find the values of \(x\) and \(y\) for which vectors \(\vec{A}=6 \hat{i}+x \hat{j}-2 \hat{k}\) and \(\vec{B}=5 \hat{i}-6 \hat{j}-y \hat{k} \quad\) may be parallel
1 \(x=0, y=\frac{2}{3}\)
2 \(x=\frac{-36}{5}, y=\frac{5}{3}\)
3 \(x=\frac{-15}{3}, y=\frac{23}{5}\)
4 \(x=\frac{36}{3}, y=\frac{15}{14}\)
Explanation:
\(\frac{6}{5}=\frac{x}{-6}=\frac{-2}{-y}\)
VECTORS
268997
The unit vector perpendicular to \(\vec{A}=2 \hat{i}+3 \hat{j}+\hat{k}\) and \(\vec{B}=\hat{i}-\hat{j}+\hat{k}\) is
269010
If\(\vec{A}=\frac{1}{\sqrt{2}} \cos \theta \hat{i}+\frac{1}{\sqrt{2}} \sin \theta \hat{j}\), what will be the unit vector perpendicular to \(\vec{A}\)
268982
Find the values of \(x\) and \(y\) for which vectors \(\vec{A}=6 \hat{i}+x \hat{j}-2 \hat{k}\) and \(\vec{B}=5 \hat{i}-6 \hat{j}-y \hat{k} \quad\) may be parallel
1 \(x=0, y=\frac{2}{3}\)
2 \(x=\frac{-36}{5}, y=\frac{5}{3}\)
3 \(x=\frac{-15}{3}, y=\frac{23}{5}\)
4 \(x=\frac{36}{3}, y=\frac{15}{14}\)
Explanation:
\(\frac{6}{5}=\frac{x}{-6}=\frac{-2}{-y}\)
VECTORS
268997
The unit vector perpendicular to \(\vec{A}=2 \hat{i}+3 \hat{j}+\hat{k}\) and \(\vec{B}=\hat{i}-\hat{j}+\hat{k}\) is
269010
If\(\vec{A}=\frac{1}{\sqrt{2}} \cos \theta \hat{i}+\frac{1}{\sqrt{2}} \sin \theta \hat{j}\), what will be the unit vector perpendicular to \(\vec{A}\)
268982
Find the values of \(x\) and \(y\) for which vectors \(\vec{A}=6 \hat{i}+x \hat{j}-2 \hat{k}\) and \(\vec{B}=5 \hat{i}-6 \hat{j}-y \hat{k} \quad\) may be parallel
1 \(x=0, y=\frac{2}{3}\)
2 \(x=\frac{-36}{5}, y=\frac{5}{3}\)
3 \(x=\frac{-15}{3}, y=\frac{23}{5}\)
4 \(x=\frac{36}{3}, y=\frac{15}{14}\)
Explanation:
\(\frac{6}{5}=\frac{x}{-6}=\frac{-2}{-y}\)
VECTORS
268997
The unit vector perpendicular to \(\vec{A}=2 \hat{i}+3 \hat{j}+\hat{k}\) and \(\vec{B}=\hat{i}-\hat{j}+\hat{k}\) is
269010
If\(\vec{A}=\frac{1}{\sqrt{2}} \cos \theta \hat{i}+\frac{1}{\sqrt{2}} \sin \theta \hat{j}\), what will be the unit vector perpendicular to \(\vec{A}\)
268982
Find the values of \(x\) and \(y\) for which vectors \(\vec{A}=6 \hat{i}+x \hat{j}-2 \hat{k}\) and \(\vec{B}=5 \hat{i}-6 \hat{j}-y \hat{k} \quad\) may be parallel
1 \(x=0, y=\frac{2}{3}\)
2 \(x=\frac{-36}{5}, y=\frac{5}{3}\)
3 \(x=\frac{-15}{3}, y=\frac{23}{5}\)
4 \(x=\frac{36}{3}, y=\frac{15}{14}\)
Explanation:
\(\frac{6}{5}=\frac{x}{-6}=\frac{-2}{-y}\)
VECTORS
268997
The unit vector perpendicular to \(\vec{A}=2 \hat{i}+3 \hat{j}+\hat{k}\) and \(\vec{B}=\hat{i}-\hat{j}+\hat{k}\) is
269010
If\(\vec{A}=\frac{1}{\sqrt{2}} \cos \theta \hat{i}+\frac{1}{\sqrt{2}} \sin \theta \hat{j}\), what will be the unit vector perpendicular to \(\vec{A}\)