VECTOR PRODUCT (OR) CROSS PRODUCT
VECTORS

268998 Find the value of \((\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})=\)

1 \((\vec{a} \times \vec{b})\)
2 \(2(\vec{a} \times \vec{b})\)
3 \(-2(\vec{a} \cdot \vec{b})\)
4 \(-2(\vec{a} \times \vec{b})\)
VECTORS

268978 If \(\vec{F}=2 \hat{i}+3 \hat{j}-\hat{k}\) and \(\vec{r}=\hat{i}-\hat{j}+6 \hat{k}\) find \(\vec{r} \times \vec{F}\)

1 \(-17 \hat{i}+13 \hat{j}+5 \hat{k}\)
2 \(-17 \hat{i}-13 \hat{j}-5 \hat{k}\)
3 \(3 \hat{i}+4 \hat{j}-5 \hat{k}\)
4 \(-3 \hat{i}-4 \hat{j}+5 \hat{k}\)
VECTORS

268979 Two sides of a triangle are given by \(\hat{i}+\hat{j}+\hat{k}\) and \(\hat{i}+2 \hat{j}+3 \hat{k}\), then area of triangle is

1 \(\sqrt{26}\)
2 \(\sqrt{26} / 2\)
3 \(\sqrt{46}\)
4 26
VECTORS

268980 The magnitude of scalar and vector products of two vectors are 144 and \(48 \sqrt{3}\) respectively. What is the angle between the two vectors ?

1 \(30^{\circ}\)
2 \(45^{\circ}\)
3 \(60^{\circ}\)
4 \(90^{0}\)
VECTORS

268981 Area of a parallelogram formed by vectors \((3 \hat{i}-2 \hat{j}+\hat{k}) \mathbf{m}\) and \((\hat{i}+2 \hat{j}+3 \hat{k})\) masadjacentsides is

1 \(3 \sqrt{8} \mathrm{~m}^{2}\)
2 \(24 \mathrm{~m}^{2}\)
3 \(8 \sqrt{3} m^{2}\)
4 \(4 \sqrt{3} m^{2}\)
VECTORS

268998 Find the value of \((\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})=\)

1 \((\vec{a} \times \vec{b})\)
2 \(2(\vec{a} \times \vec{b})\)
3 \(-2(\vec{a} \cdot \vec{b})\)
4 \(-2(\vec{a} \times \vec{b})\)
VECTORS

268978 If \(\vec{F}=2 \hat{i}+3 \hat{j}-\hat{k}\) and \(\vec{r}=\hat{i}-\hat{j}+6 \hat{k}\) find \(\vec{r} \times \vec{F}\)

1 \(-17 \hat{i}+13 \hat{j}+5 \hat{k}\)
2 \(-17 \hat{i}-13 \hat{j}-5 \hat{k}\)
3 \(3 \hat{i}+4 \hat{j}-5 \hat{k}\)
4 \(-3 \hat{i}-4 \hat{j}+5 \hat{k}\)
VECTORS

268979 Two sides of a triangle are given by \(\hat{i}+\hat{j}+\hat{k}\) and \(\hat{i}+2 \hat{j}+3 \hat{k}\), then area of triangle is

1 \(\sqrt{26}\)
2 \(\sqrt{26} / 2\)
3 \(\sqrt{46}\)
4 26
VECTORS

268980 The magnitude of scalar and vector products of two vectors are 144 and \(48 \sqrt{3}\) respectively. What is the angle between the two vectors ?

1 \(30^{\circ}\)
2 \(45^{\circ}\)
3 \(60^{\circ}\)
4 \(90^{0}\)
VECTORS

268981 Area of a parallelogram formed by vectors \((3 \hat{i}-2 \hat{j}+\hat{k}) \mathbf{m}\) and \((\hat{i}+2 \hat{j}+3 \hat{k})\) masadjacentsides is

1 \(3 \sqrt{8} \mathrm{~m}^{2}\)
2 \(24 \mathrm{~m}^{2}\)
3 \(8 \sqrt{3} m^{2}\)
4 \(4 \sqrt{3} m^{2}\)
VECTORS

268998 Find the value of \((\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})=\)

1 \((\vec{a} \times \vec{b})\)
2 \(2(\vec{a} \times \vec{b})\)
3 \(-2(\vec{a} \cdot \vec{b})\)
4 \(-2(\vec{a} \times \vec{b})\)
VECTORS

268978 If \(\vec{F}=2 \hat{i}+3 \hat{j}-\hat{k}\) and \(\vec{r}=\hat{i}-\hat{j}+6 \hat{k}\) find \(\vec{r} \times \vec{F}\)

1 \(-17 \hat{i}+13 \hat{j}+5 \hat{k}\)
2 \(-17 \hat{i}-13 \hat{j}-5 \hat{k}\)
3 \(3 \hat{i}+4 \hat{j}-5 \hat{k}\)
4 \(-3 \hat{i}-4 \hat{j}+5 \hat{k}\)
VECTORS

268979 Two sides of a triangle are given by \(\hat{i}+\hat{j}+\hat{k}\) and \(\hat{i}+2 \hat{j}+3 \hat{k}\), then area of triangle is

1 \(\sqrt{26}\)
2 \(\sqrt{26} / 2\)
3 \(\sqrt{46}\)
4 26
VECTORS

268980 The magnitude of scalar and vector products of two vectors are 144 and \(48 \sqrt{3}\) respectively. What is the angle between the two vectors ?

1 \(30^{\circ}\)
2 \(45^{\circ}\)
3 \(60^{\circ}\)
4 \(90^{0}\)
VECTORS

268981 Area of a parallelogram formed by vectors \((3 \hat{i}-2 \hat{j}+\hat{k}) \mathbf{m}\) and \((\hat{i}+2 \hat{j}+3 \hat{k})\) masadjacentsides is

1 \(3 \sqrt{8} \mathrm{~m}^{2}\)
2 \(24 \mathrm{~m}^{2}\)
3 \(8 \sqrt{3} m^{2}\)
4 \(4 \sqrt{3} m^{2}\)
VECTORS

268998 Find the value of \((\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})=\)

1 \((\vec{a} \times \vec{b})\)
2 \(2(\vec{a} \times \vec{b})\)
3 \(-2(\vec{a} \cdot \vec{b})\)
4 \(-2(\vec{a} \times \vec{b})\)
VECTORS

268978 If \(\vec{F}=2 \hat{i}+3 \hat{j}-\hat{k}\) and \(\vec{r}=\hat{i}-\hat{j}+6 \hat{k}\) find \(\vec{r} \times \vec{F}\)

1 \(-17 \hat{i}+13 \hat{j}+5 \hat{k}\)
2 \(-17 \hat{i}-13 \hat{j}-5 \hat{k}\)
3 \(3 \hat{i}+4 \hat{j}-5 \hat{k}\)
4 \(-3 \hat{i}-4 \hat{j}+5 \hat{k}\)
VECTORS

268979 Two sides of a triangle are given by \(\hat{i}+\hat{j}+\hat{k}\) and \(\hat{i}+2 \hat{j}+3 \hat{k}\), then area of triangle is

1 \(\sqrt{26}\)
2 \(\sqrt{26} / 2\)
3 \(\sqrt{46}\)
4 26
VECTORS

268980 The magnitude of scalar and vector products of two vectors are 144 and \(48 \sqrt{3}\) respectively. What is the angle between the two vectors ?

1 \(30^{\circ}\)
2 \(45^{\circ}\)
3 \(60^{\circ}\)
4 \(90^{0}\)
VECTORS

268981 Area of a parallelogram formed by vectors \((3 \hat{i}-2 \hat{j}+\hat{k}) \mathbf{m}\) and \((\hat{i}+2 \hat{j}+3 \hat{k})\) masadjacentsides is

1 \(3 \sqrt{8} \mathrm{~m}^{2}\)
2 \(24 \mathrm{~m}^{2}\)
3 \(8 \sqrt{3} m^{2}\)
4 \(4 \sqrt{3} m^{2}\)
VECTORS

268998 Find the value of \((\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})=\)

1 \((\vec{a} \times \vec{b})\)
2 \(2(\vec{a} \times \vec{b})\)
3 \(-2(\vec{a} \cdot \vec{b})\)
4 \(-2(\vec{a} \times \vec{b})\)
VECTORS

268978 If \(\vec{F}=2 \hat{i}+3 \hat{j}-\hat{k}\) and \(\vec{r}=\hat{i}-\hat{j}+6 \hat{k}\) find \(\vec{r} \times \vec{F}\)

1 \(-17 \hat{i}+13 \hat{j}+5 \hat{k}\)
2 \(-17 \hat{i}-13 \hat{j}-5 \hat{k}\)
3 \(3 \hat{i}+4 \hat{j}-5 \hat{k}\)
4 \(-3 \hat{i}-4 \hat{j}+5 \hat{k}\)
VECTORS

268979 Two sides of a triangle are given by \(\hat{i}+\hat{j}+\hat{k}\) and \(\hat{i}+2 \hat{j}+3 \hat{k}\), then area of triangle is

1 \(\sqrt{26}\)
2 \(\sqrt{26} / 2\)
3 \(\sqrt{46}\)
4 26
VECTORS

268980 The magnitude of scalar and vector products of two vectors are 144 and \(48 \sqrt{3}\) respectively. What is the angle between the two vectors ?

1 \(30^{\circ}\)
2 \(45^{\circ}\)
3 \(60^{\circ}\)
4 \(90^{0}\)
VECTORS

268981 Area of a parallelogram formed by vectors \((3 \hat{i}-2 \hat{j}+\hat{k}) \mathbf{m}\) and \((\hat{i}+2 \hat{j}+3 \hat{k})\) masadjacentsides is

1 \(3 \sqrt{8} \mathrm{~m}^{2}\)
2 \(24 \mathrm{~m}^{2}\)
3 \(8 \sqrt{3} m^{2}\)
4 \(4 \sqrt{3} m^{2}\)