268968
If \(\vec{a}=2 \hat{i}+6 \hat{j}+m \hat{k}\) and \(\vec{b}=n \hat{i}+18 \hat{j}+3 \hat{k}\) are parallel to each other then values of \(m, n\) are
1 1,6
2 6,1
3 \(-1,6\)
4 \(-1,-6\)
Explanation:
\(\frac{2}{n}=\frac{6}{18}=\frac{m}{3}\)
VECTORS
268969
A particle has an initial velocity \((6 \hat{i}+8 \hat{j}) \mathbf{m s}^{-\mathbf{1}}\) and an acceleration of \((0.8 \hat{i}+0.6 \hat{j}) \mathbf{m s}^{-2}\). Its speed after \(10 \mathrm{~s}\) is
268970
A motor boat is going in a river with velocity \(\vec{V}=4 \hat{i}-2 \hat{j}+\hat{k} \mathrm{~ms}^{-1}\) If the resisting force due to stream is, \(\vec{F}=(5 \hat{i}-10 \hat{j}+6 \hat{k}) N\). Then the power of the motor boat is.
1 \(100 \mathrm{w}\)
2 \(50 \mathrm{w}\)
3 \(46 \mathrm{w}\)
4 \(23 \mathrm{w}\)
Explanation:
\(P=\vec{F} \cdot \vec{V}\)
VECTORS
268971
The angle between the two vectors \(-2 \hat{i}+3 \hat{j}-\hat{k}\) and \(\hat{i}+2 \hat{j}+4 \hat{k}\) is
1 \(0^{0}\)
2 \(90^{\circ}\)
3 \(180^{\circ}\)
4 \(45^{\circ}\)
Explanation:
\(\cos \theta=\frac{\vec{A} \cdot \vec{B}}{A B}\)
VECTORS
268972
If a vector \(\vec{A}=2 \hat{i}+2 \hat{j}+3 \hat{k}\), and \(\vec{B}=3 \hat{i}+6 \hat{j}+n \hat{k}\), are perpendicular to each other then the value of ' \(n\) ' is
268968
If \(\vec{a}=2 \hat{i}+6 \hat{j}+m \hat{k}\) and \(\vec{b}=n \hat{i}+18 \hat{j}+3 \hat{k}\) are parallel to each other then values of \(m, n\) are
1 1,6
2 6,1
3 \(-1,6\)
4 \(-1,-6\)
Explanation:
\(\frac{2}{n}=\frac{6}{18}=\frac{m}{3}\)
VECTORS
268969
A particle has an initial velocity \((6 \hat{i}+8 \hat{j}) \mathbf{m s}^{-\mathbf{1}}\) and an acceleration of \((0.8 \hat{i}+0.6 \hat{j}) \mathbf{m s}^{-2}\). Its speed after \(10 \mathrm{~s}\) is
268970
A motor boat is going in a river with velocity \(\vec{V}=4 \hat{i}-2 \hat{j}+\hat{k} \mathrm{~ms}^{-1}\) If the resisting force due to stream is, \(\vec{F}=(5 \hat{i}-10 \hat{j}+6 \hat{k}) N\). Then the power of the motor boat is.
1 \(100 \mathrm{w}\)
2 \(50 \mathrm{w}\)
3 \(46 \mathrm{w}\)
4 \(23 \mathrm{w}\)
Explanation:
\(P=\vec{F} \cdot \vec{V}\)
VECTORS
268971
The angle between the two vectors \(-2 \hat{i}+3 \hat{j}-\hat{k}\) and \(\hat{i}+2 \hat{j}+4 \hat{k}\) is
1 \(0^{0}\)
2 \(90^{\circ}\)
3 \(180^{\circ}\)
4 \(45^{\circ}\)
Explanation:
\(\cos \theta=\frac{\vec{A} \cdot \vec{B}}{A B}\)
VECTORS
268972
If a vector \(\vec{A}=2 \hat{i}+2 \hat{j}+3 \hat{k}\), and \(\vec{B}=3 \hat{i}+6 \hat{j}+n \hat{k}\), are perpendicular to each other then the value of ' \(n\) ' is
268968
If \(\vec{a}=2 \hat{i}+6 \hat{j}+m \hat{k}\) and \(\vec{b}=n \hat{i}+18 \hat{j}+3 \hat{k}\) are parallel to each other then values of \(m, n\) are
1 1,6
2 6,1
3 \(-1,6\)
4 \(-1,-6\)
Explanation:
\(\frac{2}{n}=\frac{6}{18}=\frac{m}{3}\)
VECTORS
268969
A particle has an initial velocity \((6 \hat{i}+8 \hat{j}) \mathbf{m s}^{-\mathbf{1}}\) and an acceleration of \((0.8 \hat{i}+0.6 \hat{j}) \mathbf{m s}^{-2}\). Its speed after \(10 \mathrm{~s}\) is
268970
A motor boat is going in a river with velocity \(\vec{V}=4 \hat{i}-2 \hat{j}+\hat{k} \mathrm{~ms}^{-1}\) If the resisting force due to stream is, \(\vec{F}=(5 \hat{i}-10 \hat{j}+6 \hat{k}) N\). Then the power of the motor boat is.
1 \(100 \mathrm{w}\)
2 \(50 \mathrm{w}\)
3 \(46 \mathrm{w}\)
4 \(23 \mathrm{w}\)
Explanation:
\(P=\vec{F} \cdot \vec{V}\)
VECTORS
268971
The angle between the two vectors \(-2 \hat{i}+3 \hat{j}-\hat{k}\) and \(\hat{i}+2 \hat{j}+4 \hat{k}\) is
1 \(0^{0}\)
2 \(90^{\circ}\)
3 \(180^{\circ}\)
4 \(45^{\circ}\)
Explanation:
\(\cos \theta=\frac{\vec{A} \cdot \vec{B}}{A B}\)
VECTORS
268972
If a vector \(\vec{A}=2 \hat{i}+2 \hat{j}+3 \hat{k}\), and \(\vec{B}=3 \hat{i}+6 \hat{j}+n \hat{k}\), are perpendicular to each other then the value of ' \(n\) ' is
268968
If \(\vec{a}=2 \hat{i}+6 \hat{j}+m \hat{k}\) and \(\vec{b}=n \hat{i}+18 \hat{j}+3 \hat{k}\) are parallel to each other then values of \(m, n\) are
1 1,6
2 6,1
3 \(-1,6\)
4 \(-1,-6\)
Explanation:
\(\frac{2}{n}=\frac{6}{18}=\frac{m}{3}\)
VECTORS
268969
A particle has an initial velocity \((6 \hat{i}+8 \hat{j}) \mathbf{m s}^{-\mathbf{1}}\) and an acceleration of \((0.8 \hat{i}+0.6 \hat{j}) \mathbf{m s}^{-2}\). Its speed after \(10 \mathrm{~s}\) is
268970
A motor boat is going in a river with velocity \(\vec{V}=4 \hat{i}-2 \hat{j}+\hat{k} \mathrm{~ms}^{-1}\) If the resisting force due to stream is, \(\vec{F}=(5 \hat{i}-10 \hat{j}+6 \hat{k}) N\). Then the power of the motor boat is.
1 \(100 \mathrm{w}\)
2 \(50 \mathrm{w}\)
3 \(46 \mathrm{w}\)
4 \(23 \mathrm{w}\)
Explanation:
\(P=\vec{F} \cdot \vec{V}\)
VECTORS
268971
The angle between the two vectors \(-2 \hat{i}+3 \hat{j}-\hat{k}\) and \(\hat{i}+2 \hat{j}+4 \hat{k}\) is
1 \(0^{0}\)
2 \(90^{\circ}\)
3 \(180^{\circ}\)
4 \(45^{\circ}\)
Explanation:
\(\cos \theta=\frac{\vec{A} \cdot \vec{B}}{A B}\)
VECTORS
268972
If a vector \(\vec{A}=2 \hat{i}+2 \hat{j}+3 \hat{k}\), and \(\vec{B}=3 \hat{i}+6 \hat{j}+n \hat{k}\), are perpendicular to each other then the value of ' \(n\) ' is
268968
If \(\vec{a}=2 \hat{i}+6 \hat{j}+m \hat{k}\) and \(\vec{b}=n \hat{i}+18 \hat{j}+3 \hat{k}\) are parallel to each other then values of \(m, n\) are
1 1,6
2 6,1
3 \(-1,6\)
4 \(-1,-6\)
Explanation:
\(\frac{2}{n}=\frac{6}{18}=\frac{m}{3}\)
VECTORS
268969
A particle has an initial velocity \((6 \hat{i}+8 \hat{j}) \mathbf{m s}^{-\mathbf{1}}\) and an acceleration of \((0.8 \hat{i}+0.6 \hat{j}) \mathbf{m s}^{-2}\). Its speed after \(10 \mathrm{~s}\) is
268970
A motor boat is going in a river with velocity \(\vec{V}=4 \hat{i}-2 \hat{j}+\hat{k} \mathrm{~ms}^{-1}\) If the resisting force due to stream is, \(\vec{F}=(5 \hat{i}-10 \hat{j}+6 \hat{k}) N\). Then the power of the motor boat is.
1 \(100 \mathrm{w}\)
2 \(50 \mathrm{w}\)
3 \(46 \mathrm{w}\)
4 \(23 \mathrm{w}\)
Explanation:
\(P=\vec{F} \cdot \vec{V}\)
VECTORS
268971
The angle between the two vectors \(-2 \hat{i}+3 \hat{j}-\hat{k}\) and \(\hat{i}+2 \hat{j}+4 \hat{k}\) is
1 \(0^{0}\)
2 \(90^{\circ}\)
3 \(180^{\circ}\)
4 \(45^{\circ}\)
Explanation:
\(\cos \theta=\frac{\vec{A} \cdot \vec{B}}{A B}\)
VECTORS
268972
If a vector \(\vec{A}=2 \hat{i}+2 \hat{j}+3 \hat{k}\), and \(\vec{B}=3 \hat{i}+6 \hat{j}+n \hat{k}\), are perpendicular to each other then the value of ' \(n\) ' is