268638
If \(\vec{F}=2 \hat{i}+3 \hat{j}+4 \hat{k}\) acts on a body and displaces it by \(\vec{S}=3 \hat{i}+2 \hat{j}+5 \hat{k}\), then the work done by the force is
1 \(12 \mathrm{~J}\)
2 \(20 \mathrm{~J}\)
3 \(32 \mathrm{~J}\)
4 \(64 \mathrm{~J}\)
Explanation:
\(\quad W=\vec{F} . \vec{S} \quad\)
Work, Energy and Power
268639
A force of \(1200 \mathrm{~N}\) acting on a stone by means of a rope slides the stone through a distance of \(10 \mathrm{~m}\) in a direction inclined at \(60^{\circ}\) to the force. The work done by the force is
1 \(6000 \sqrt{3} J\)
2 \(6000 \mathrm{~J}\)
3 \(12000 \mathrm{~J}\)
4 \(8000 \mathrm{~J}\)
Explanation:
\(W=F S \cos \theta\)
Work, Energy and Power
268640
A man weighing \(80 \mathrm{~kg}\) climbs a staircase carrying a \(20 \mathrm{~kg}\) load. The staircase has 40 steps, each of \(25 \mathrm{~cm}\) height. If he takes 20 seconds to climb, the work done is
268642
A force \(\vec{F}=(6 \hat{i}-8 \hat{j}) N\), acts on a particle and displaces it over \(4 \mathrm{~m}\) along the \(X\)-axis and \(6 \mathrm{~m}\) along the \(Y\)-axis. The work done during the total displacement is
1 \(72 \mathrm{~J}\)
2 \(24 \mathrm{~J}\)
3 - \(24 \mathrm{~J}\)
4 zero
Explanation:
\(\quad \mathrm{W}=\mathrm{W}_{\mathrm{x}}+\mathrm{W}_{\mathrm{y}} ; \quad \mathrm{W}_{\mathrm{x}}=\vec{F} \cdot x \hat{i}, \quad W_{y}=\vec{F} \cdot y \hat{j}\)
268638
If \(\vec{F}=2 \hat{i}+3 \hat{j}+4 \hat{k}\) acts on a body and displaces it by \(\vec{S}=3 \hat{i}+2 \hat{j}+5 \hat{k}\), then the work done by the force is
1 \(12 \mathrm{~J}\)
2 \(20 \mathrm{~J}\)
3 \(32 \mathrm{~J}\)
4 \(64 \mathrm{~J}\)
Explanation:
\(\quad W=\vec{F} . \vec{S} \quad\)
Work, Energy and Power
268639
A force of \(1200 \mathrm{~N}\) acting on a stone by means of a rope slides the stone through a distance of \(10 \mathrm{~m}\) in a direction inclined at \(60^{\circ}\) to the force. The work done by the force is
1 \(6000 \sqrt{3} J\)
2 \(6000 \mathrm{~J}\)
3 \(12000 \mathrm{~J}\)
4 \(8000 \mathrm{~J}\)
Explanation:
\(W=F S \cos \theta\)
Work, Energy and Power
268640
A man weighing \(80 \mathrm{~kg}\) climbs a staircase carrying a \(20 \mathrm{~kg}\) load. The staircase has 40 steps, each of \(25 \mathrm{~cm}\) height. If he takes 20 seconds to climb, the work done is
268642
A force \(\vec{F}=(6 \hat{i}-8 \hat{j}) N\), acts on a particle and displaces it over \(4 \mathrm{~m}\) along the \(X\)-axis and \(6 \mathrm{~m}\) along the \(Y\)-axis. The work done during the total displacement is
1 \(72 \mathrm{~J}\)
2 \(24 \mathrm{~J}\)
3 - \(24 \mathrm{~J}\)
4 zero
Explanation:
\(\quad \mathrm{W}=\mathrm{W}_{\mathrm{x}}+\mathrm{W}_{\mathrm{y}} ; \quad \mathrm{W}_{\mathrm{x}}=\vec{F} \cdot x \hat{i}, \quad W_{y}=\vec{F} \cdot y \hat{j}\)
268638
If \(\vec{F}=2 \hat{i}+3 \hat{j}+4 \hat{k}\) acts on a body and displaces it by \(\vec{S}=3 \hat{i}+2 \hat{j}+5 \hat{k}\), then the work done by the force is
1 \(12 \mathrm{~J}\)
2 \(20 \mathrm{~J}\)
3 \(32 \mathrm{~J}\)
4 \(64 \mathrm{~J}\)
Explanation:
\(\quad W=\vec{F} . \vec{S} \quad\)
Work, Energy and Power
268639
A force of \(1200 \mathrm{~N}\) acting on a stone by means of a rope slides the stone through a distance of \(10 \mathrm{~m}\) in a direction inclined at \(60^{\circ}\) to the force. The work done by the force is
1 \(6000 \sqrt{3} J\)
2 \(6000 \mathrm{~J}\)
3 \(12000 \mathrm{~J}\)
4 \(8000 \mathrm{~J}\)
Explanation:
\(W=F S \cos \theta\)
Work, Energy and Power
268640
A man weighing \(80 \mathrm{~kg}\) climbs a staircase carrying a \(20 \mathrm{~kg}\) load. The staircase has 40 steps, each of \(25 \mathrm{~cm}\) height. If he takes 20 seconds to climb, the work done is
268642
A force \(\vec{F}=(6 \hat{i}-8 \hat{j}) N\), acts on a particle and displaces it over \(4 \mathrm{~m}\) along the \(X\)-axis and \(6 \mathrm{~m}\) along the \(Y\)-axis. The work done during the total displacement is
1 \(72 \mathrm{~J}\)
2 \(24 \mathrm{~J}\)
3 - \(24 \mathrm{~J}\)
4 zero
Explanation:
\(\quad \mathrm{W}=\mathrm{W}_{\mathrm{x}}+\mathrm{W}_{\mathrm{y}} ; \quad \mathrm{W}_{\mathrm{x}}=\vec{F} \cdot x \hat{i}, \quad W_{y}=\vec{F} \cdot y \hat{j}\)
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
Work, Energy and Power
268638
If \(\vec{F}=2 \hat{i}+3 \hat{j}+4 \hat{k}\) acts on a body and displaces it by \(\vec{S}=3 \hat{i}+2 \hat{j}+5 \hat{k}\), then the work done by the force is
1 \(12 \mathrm{~J}\)
2 \(20 \mathrm{~J}\)
3 \(32 \mathrm{~J}\)
4 \(64 \mathrm{~J}\)
Explanation:
\(\quad W=\vec{F} . \vec{S} \quad\)
Work, Energy and Power
268639
A force of \(1200 \mathrm{~N}\) acting on a stone by means of a rope slides the stone through a distance of \(10 \mathrm{~m}\) in a direction inclined at \(60^{\circ}\) to the force. The work done by the force is
1 \(6000 \sqrt{3} J\)
2 \(6000 \mathrm{~J}\)
3 \(12000 \mathrm{~J}\)
4 \(8000 \mathrm{~J}\)
Explanation:
\(W=F S \cos \theta\)
Work, Energy and Power
268640
A man weighing \(80 \mathrm{~kg}\) climbs a staircase carrying a \(20 \mathrm{~kg}\) load. The staircase has 40 steps, each of \(25 \mathrm{~cm}\) height. If he takes 20 seconds to climb, the work done is
268642
A force \(\vec{F}=(6 \hat{i}-8 \hat{j}) N\), acts on a particle and displaces it over \(4 \mathrm{~m}\) along the \(X\)-axis and \(6 \mathrm{~m}\) along the \(Y\)-axis. The work done during the total displacement is
1 \(72 \mathrm{~J}\)
2 \(24 \mathrm{~J}\)
3 - \(24 \mathrm{~J}\)
4 zero
Explanation:
\(\quad \mathrm{W}=\mathrm{W}_{\mathrm{x}}+\mathrm{W}_{\mathrm{y}} ; \quad \mathrm{W}_{\mathrm{x}}=\vec{F} \cdot x \hat{i}, \quad W_{y}=\vec{F} \cdot y \hat{j}\)
268638
If \(\vec{F}=2 \hat{i}+3 \hat{j}+4 \hat{k}\) acts on a body and displaces it by \(\vec{S}=3 \hat{i}+2 \hat{j}+5 \hat{k}\), then the work done by the force is
1 \(12 \mathrm{~J}\)
2 \(20 \mathrm{~J}\)
3 \(32 \mathrm{~J}\)
4 \(64 \mathrm{~J}\)
Explanation:
\(\quad W=\vec{F} . \vec{S} \quad\)
Work, Energy and Power
268639
A force of \(1200 \mathrm{~N}\) acting on a stone by means of a rope slides the stone through a distance of \(10 \mathrm{~m}\) in a direction inclined at \(60^{\circ}\) to the force. The work done by the force is
1 \(6000 \sqrt{3} J\)
2 \(6000 \mathrm{~J}\)
3 \(12000 \mathrm{~J}\)
4 \(8000 \mathrm{~J}\)
Explanation:
\(W=F S \cos \theta\)
Work, Energy and Power
268640
A man weighing \(80 \mathrm{~kg}\) climbs a staircase carrying a \(20 \mathrm{~kg}\) load. The staircase has 40 steps, each of \(25 \mathrm{~cm}\) height. If he takes 20 seconds to climb, the work done is
268642
A force \(\vec{F}=(6 \hat{i}-8 \hat{j}) N\), acts on a particle and displaces it over \(4 \mathrm{~m}\) along the \(X\)-axis and \(6 \mathrm{~m}\) along the \(Y\)-axis. The work done during the total displacement is
1 \(72 \mathrm{~J}\)
2 \(24 \mathrm{~J}\)
3 - \(24 \mathrm{~J}\)
4 zero
Explanation:
\(\quad \mathrm{W}=\mathrm{W}_{\mathrm{x}}+\mathrm{W}_{\mathrm{y}} ; \quad \mathrm{W}_{\mathrm{x}}=\vec{F} \cdot x \hat{i}, \quad W_{y}=\vec{F} \cdot y \hat{j}\)