268279
If the electron in a Hydrogen atom makes \(6.25 \times 10^{15}\) revolutions in one second, the current is
1 \(1.12 \mathrm{~mA}\)
2 \(1 \mathrm{~mA}\)
3 \(1.25 \mathrm{~mA}\)
4 \(1.5 \mathrm{~mA}\)
Explanation:
\(\mathrm{i}=\mathrm{qf}\)
Current Electricity
268280
The current through a wire connected to a condenser varies with time as \(i=(2 t+1) A\) The charge transport to the condenser from \(t=0\) to \(t=5\) s is
1 \(5 C\)
2 \(55 C\)
3 \(30 C\)
4 \(60 C\)
Explanation:
\(q=\int_{0}^{5} i d t\)
Current Electricity
268281
A copper wire of cross-sectional area 2.0 \(\mathrm{mm}^{2}\), resistivity \(=1.7 \times 10^{-8} \Omega \mathrm{m}\), carries a current of 1A. The electric field in the copper wire is
1 \(8.5 \times 10^{-5} \mathrm{~V} / \mathrm{m}\)
2 \(8.5 \times 10^{-4} \mathrm{~V} / \mathrm{m}\)
3 \(8.5 \times 10^{-3} \mathrm{~V} / \mathrm{m}\)
4 \(8.5 \times 10^{-2} \mathrm{~V} / \mathrm{m}\)
Explanation:
\(E=\frac{i \rho}{A}\)
Current Electricity
268178
When electric field ( \(\vec{E}\) ) is applied on the ends of a conductor, the free electrons starts moving in direction
1 similar to \(\vec{E}\)
2 Oppositeto \(\vec{E}\)
3 Perpendicular to \(\vec{E}\)
4 Cannot be predicted
Explanation:
Current Electricity
268179
Thedrift speed of an electron in a metal is of the order of
268279
If the electron in a Hydrogen atom makes \(6.25 \times 10^{15}\) revolutions in one second, the current is
1 \(1.12 \mathrm{~mA}\)
2 \(1 \mathrm{~mA}\)
3 \(1.25 \mathrm{~mA}\)
4 \(1.5 \mathrm{~mA}\)
Explanation:
\(\mathrm{i}=\mathrm{qf}\)
Current Electricity
268280
The current through a wire connected to a condenser varies with time as \(i=(2 t+1) A\) The charge transport to the condenser from \(t=0\) to \(t=5\) s is
1 \(5 C\)
2 \(55 C\)
3 \(30 C\)
4 \(60 C\)
Explanation:
\(q=\int_{0}^{5} i d t\)
Current Electricity
268281
A copper wire of cross-sectional area 2.0 \(\mathrm{mm}^{2}\), resistivity \(=1.7 \times 10^{-8} \Omega \mathrm{m}\), carries a current of 1A. The electric field in the copper wire is
1 \(8.5 \times 10^{-5} \mathrm{~V} / \mathrm{m}\)
2 \(8.5 \times 10^{-4} \mathrm{~V} / \mathrm{m}\)
3 \(8.5 \times 10^{-3} \mathrm{~V} / \mathrm{m}\)
4 \(8.5 \times 10^{-2} \mathrm{~V} / \mathrm{m}\)
Explanation:
\(E=\frac{i \rho}{A}\)
Current Electricity
268178
When electric field ( \(\vec{E}\) ) is applied on the ends of a conductor, the free electrons starts moving in direction
1 similar to \(\vec{E}\)
2 Oppositeto \(\vec{E}\)
3 Perpendicular to \(\vec{E}\)
4 Cannot be predicted
Explanation:
Current Electricity
268179
Thedrift speed of an electron in a metal is of the order of
268279
If the electron in a Hydrogen atom makes \(6.25 \times 10^{15}\) revolutions in one second, the current is
1 \(1.12 \mathrm{~mA}\)
2 \(1 \mathrm{~mA}\)
3 \(1.25 \mathrm{~mA}\)
4 \(1.5 \mathrm{~mA}\)
Explanation:
\(\mathrm{i}=\mathrm{qf}\)
Current Electricity
268280
The current through a wire connected to a condenser varies with time as \(i=(2 t+1) A\) The charge transport to the condenser from \(t=0\) to \(t=5\) s is
1 \(5 C\)
2 \(55 C\)
3 \(30 C\)
4 \(60 C\)
Explanation:
\(q=\int_{0}^{5} i d t\)
Current Electricity
268281
A copper wire of cross-sectional area 2.0 \(\mathrm{mm}^{2}\), resistivity \(=1.7 \times 10^{-8} \Omega \mathrm{m}\), carries a current of 1A. The electric field in the copper wire is
1 \(8.5 \times 10^{-5} \mathrm{~V} / \mathrm{m}\)
2 \(8.5 \times 10^{-4} \mathrm{~V} / \mathrm{m}\)
3 \(8.5 \times 10^{-3} \mathrm{~V} / \mathrm{m}\)
4 \(8.5 \times 10^{-2} \mathrm{~V} / \mathrm{m}\)
Explanation:
\(E=\frac{i \rho}{A}\)
Current Electricity
268178
When electric field ( \(\vec{E}\) ) is applied on the ends of a conductor, the free electrons starts moving in direction
1 similar to \(\vec{E}\)
2 Oppositeto \(\vec{E}\)
3 Perpendicular to \(\vec{E}\)
4 Cannot be predicted
Explanation:
Current Electricity
268179
Thedrift speed of an electron in a metal is of the order of
268279
If the electron in a Hydrogen atom makes \(6.25 \times 10^{15}\) revolutions in one second, the current is
1 \(1.12 \mathrm{~mA}\)
2 \(1 \mathrm{~mA}\)
3 \(1.25 \mathrm{~mA}\)
4 \(1.5 \mathrm{~mA}\)
Explanation:
\(\mathrm{i}=\mathrm{qf}\)
Current Electricity
268280
The current through a wire connected to a condenser varies with time as \(i=(2 t+1) A\) The charge transport to the condenser from \(t=0\) to \(t=5\) s is
1 \(5 C\)
2 \(55 C\)
3 \(30 C\)
4 \(60 C\)
Explanation:
\(q=\int_{0}^{5} i d t\)
Current Electricity
268281
A copper wire of cross-sectional area 2.0 \(\mathrm{mm}^{2}\), resistivity \(=1.7 \times 10^{-8} \Omega \mathrm{m}\), carries a current of 1A. The electric field in the copper wire is
1 \(8.5 \times 10^{-5} \mathrm{~V} / \mathrm{m}\)
2 \(8.5 \times 10^{-4} \mathrm{~V} / \mathrm{m}\)
3 \(8.5 \times 10^{-3} \mathrm{~V} / \mathrm{m}\)
4 \(8.5 \times 10^{-2} \mathrm{~V} / \mathrm{m}\)
Explanation:
\(E=\frac{i \rho}{A}\)
Current Electricity
268178
When electric field ( \(\vec{E}\) ) is applied on the ends of a conductor, the free electrons starts moving in direction
1 similar to \(\vec{E}\)
2 Oppositeto \(\vec{E}\)
3 Perpendicular to \(\vec{E}\)
4 Cannot be predicted
Explanation:
Current Electricity
268179
Thedrift speed of an electron in a metal is of the order of
268279
If the electron in a Hydrogen atom makes \(6.25 \times 10^{15}\) revolutions in one second, the current is
1 \(1.12 \mathrm{~mA}\)
2 \(1 \mathrm{~mA}\)
3 \(1.25 \mathrm{~mA}\)
4 \(1.5 \mathrm{~mA}\)
Explanation:
\(\mathrm{i}=\mathrm{qf}\)
Current Electricity
268280
The current through a wire connected to a condenser varies with time as \(i=(2 t+1) A\) The charge transport to the condenser from \(t=0\) to \(t=5\) s is
1 \(5 C\)
2 \(55 C\)
3 \(30 C\)
4 \(60 C\)
Explanation:
\(q=\int_{0}^{5} i d t\)
Current Electricity
268281
A copper wire of cross-sectional area 2.0 \(\mathrm{mm}^{2}\), resistivity \(=1.7 \times 10^{-8} \Omega \mathrm{m}\), carries a current of 1A. The electric field in the copper wire is
1 \(8.5 \times 10^{-5} \mathrm{~V} / \mathrm{m}\)
2 \(8.5 \times 10^{-4} \mathrm{~V} / \mathrm{m}\)
3 \(8.5 \times 10^{-3} \mathrm{~V} / \mathrm{m}\)
4 \(8.5 \times 10^{-2} \mathrm{~V} / \mathrm{m}\)
Explanation:
\(E=\frac{i \rho}{A}\)
Current Electricity
268178
When electric field ( \(\vec{E}\) ) is applied on the ends of a conductor, the free electrons starts moving in direction
1 similar to \(\vec{E}\)
2 Oppositeto \(\vec{E}\)
3 Perpendicular to \(\vec{E}\)
4 Cannot be predicted
Explanation:
Current Electricity
268179
Thedrift speed of an electron in a metal is of the order of