266648
A free is olated atom is in excited state came to ground state and releases a photon of frequency 'n' \{Given \(\mathrm{E}_{\mathrm{ex}}-\mathrm{E}_{\mathrm{G}}=\Delta \mathrm{E}\) \}
4 An accelerated charge and a charge in uniform motion
Explanation:
c Electromagnetic energy is radiated by an accelerated charge only
**NCERT-XII-I-112**
TEST SERIES (PHYSICS FST)
266635
A ball dropped from height \(h\) on a horizontal floor goes up to the height \(\frac{\mathrm{h}}{4}\) after hitting the floor. Fraction of energy of ball lost in the impact is :-
266608
If force (F) work (W) and velocity (v) are taken as fundamental quantities, the dimensional formula of time (T) is :
1 \(\left[W^1 F^{-1} v^{-1}\right]\)
2 \(\left[W^{-1} F^2 y^{-1}\right]\)
3 \(\left[W^1 F^1 v^{-2}\right]\)
4 \(\left[W^1 F^1 w^1\right]\)
Explanation:
a Let \(\mathbf{T}=\mathrm{F}^a \mathrm{~W}^{\mathrm{b}} \mathrm{v}^{\mathrm{c}}\) Equating powers of [M], [L] and [T] on both sides \(0=a+b\) or \(a=-b\) \(0=\mathrm{a}+2 \mathrm{~b}+\mathrm{c} \quad\) or \(\mathrm{c}=-\mathrm{a}-2 \mathrm{~b}-\mathrm{a}+2 \mathrm{a}=\mathrm{a}\) \(1=-2 a-2 b-c=-2 a-c\) or \(\mathrm{v}=-1\) \(\therefore a=c=-1\) and \(b=-a=+1\) \(\therefore \quad \mathrm{T}=\left[\mathrm{F}^{-1} \mathrm{~W}^1 \mathrm{v}^{-1}\right]\) 1.6 mole So a a mount of HCl Needs \(=1.6 \times 36.5\)
266648
A free is olated atom is in excited state came to ground state and releases a photon of frequency 'n' \{Given \(\mathrm{E}_{\mathrm{ex}}-\mathrm{E}_{\mathrm{G}}=\Delta \mathrm{E}\) \}
4 An accelerated charge and a charge in uniform motion
Explanation:
c Electromagnetic energy is radiated by an accelerated charge only
**NCERT-XII-I-112**
TEST SERIES (PHYSICS FST)
266635
A ball dropped from height \(h\) on a horizontal floor goes up to the height \(\frac{\mathrm{h}}{4}\) after hitting the floor. Fraction of energy of ball lost in the impact is :-
266608
If force (F) work (W) and velocity (v) are taken as fundamental quantities, the dimensional formula of time (T) is :
1 \(\left[W^1 F^{-1} v^{-1}\right]\)
2 \(\left[W^{-1} F^2 y^{-1}\right]\)
3 \(\left[W^1 F^1 v^{-2}\right]\)
4 \(\left[W^1 F^1 w^1\right]\)
Explanation:
a Let \(\mathbf{T}=\mathrm{F}^a \mathrm{~W}^{\mathrm{b}} \mathrm{v}^{\mathrm{c}}\) Equating powers of [M], [L] and [T] on both sides \(0=a+b\) or \(a=-b\) \(0=\mathrm{a}+2 \mathrm{~b}+\mathrm{c} \quad\) or \(\mathrm{c}=-\mathrm{a}-2 \mathrm{~b}-\mathrm{a}+2 \mathrm{a}=\mathrm{a}\) \(1=-2 a-2 b-c=-2 a-c\) or \(\mathrm{v}=-1\) \(\therefore a=c=-1\) and \(b=-a=+1\) \(\therefore \quad \mathrm{T}=\left[\mathrm{F}^{-1} \mathrm{~W}^1 \mathrm{v}^{-1}\right]\) 1.6 mole So a a mount of HCl Needs \(=1.6 \times 36.5\)
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
TEST SERIES (PHYSICS FST)
266648
A free is olated atom is in excited state came to ground state and releases a photon of frequency 'n' \{Given \(\mathrm{E}_{\mathrm{ex}}-\mathrm{E}_{\mathrm{G}}=\Delta \mathrm{E}\) \}
4 An accelerated charge and a charge in uniform motion
Explanation:
c Electromagnetic energy is radiated by an accelerated charge only
**NCERT-XII-I-112**
TEST SERIES (PHYSICS FST)
266635
A ball dropped from height \(h\) on a horizontal floor goes up to the height \(\frac{\mathrm{h}}{4}\) after hitting the floor. Fraction of energy of ball lost in the impact is :-
266608
If force (F) work (W) and velocity (v) are taken as fundamental quantities, the dimensional formula of time (T) is :
1 \(\left[W^1 F^{-1} v^{-1}\right]\)
2 \(\left[W^{-1} F^2 y^{-1}\right]\)
3 \(\left[W^1 F^1 v^{-2}\right]\)
4 \(\left[W^1 F^1 w^1\right]\)
Explanation:
a Let \(\mathbf{T}=\mathrm{F}^a \mathrm{~W}^{\mathrm{b}} \mathrm{v}^{\mathrm{c}}\) Equating powers of [M], [L] and [T] on both sides \(0=a+b\) or \(a=-b\) \(0=\mathrm{a}+2 \mathrm{~b}+\mathrm{c} \quad\) or \(\mathrm{c}=-\mathrm{a}-2 \mathrm{~b}-\mathrm{a}+2 \mathrm{a}=\mathrm{a}\) \(1=-2 a-2 b-c=-2 a-c\) or \(\mathrm{v}=-1\) \(\therefore a=c=-1\) and \(b=-a=+1\) \(\therefore \quad \mathrm{T}=\left[\mathrm{F}^{-1} \mathrm{~W}^1 \mathrm{v}^{-1}\right]\) 1.6 mole So a a mount of HCl Needs \(=1.6 \times 36.5\)
266648
A free is olated atom is in excited state came to ground state and releases a photon of frequency 'n' \{Given \(\mathrm{E}_{\mathrm{ex}}-\mathrm{E}_{\mathrm{G}}=\Delta \mathrm{E}\) \}
4 An accelerated charge and a charge in uniform motion
Explanation:
c Electromagnetic energy is radiated by an accelerated charge only
**NCERT-XII-I-112**
TEST SERIES (PHYSICS FST)
266635
A ball dropped from height \(h\) on a horizontal floor goes up to the height \(\frac{\mathrm{h}}{4}\) after hitting the floor. Fraction of energy of ball lost in the impact is :-
266608
If force (F) work (W) and velocity (v) are taken as fundamental quantities, the dimensional formula of time (T) is :
1 \(\left[W^1 F^{-1} v^{-1}\right]\)
2 \(\left[W^{-1} F^2 y^{-1}\right]\)
3 \(\left[W^1 F^1 v^{-2}\right]\)
4 \(\left[W^1 F^1 w^1\right]\)
Explanation:
a Let \(\mathbf{T}=\mathrm{F}^a \mathrm{~W}^{\mathrm{b}} \mathrm{v}^{\mathrm{c}}\) Equating powers of [M], [L] and [T] on both sides \(0=a+b\) or \(a=-b\) \(0=\mathrm{a}+2 \mathrm{~b}+\mathrm{c} \quad\) or \(\mathrm{c}=-\mathrm{a}-2 \mathrm{~b}-\mathrm{a}+2 \mathrm{a}=\mathrm{a}\) \(1=-2 a-2 b-c=-2 a-c\) or \(\mathrm{v}=-1\) \(\therefore a=c=-1\) and \(b=-a=+1\) \(\therefore \quad \mathrm{T}=\left[\mathrm{F}^{-1} \mathrm{~W}^1 \mathrm{v}^{-1}\right]\) 1.6 mole So a a mount of HCl Needs \(=1.6 \times 36.5\)
266648
A free is olated atom is in excited state came to ground state and releases a photon of frequency 'n' \{Given \(\mathrm{E}_{\mathrm{ex}}-\mathrm{E}_{\mathrm{G}}=\Delta \mathrm{E}\) \}
4 An accelerated charge and a charge in uniform motion
Explanation:
c Electromagnetic energy is radiated by an accelerated charge only
**NCERT-XII-I-112**
TEST SERIES (PHYSICS FST)
266635
A ball dropped from height \(h\) on a horizontal floor goes up to the height \(\frac{\mathrm{h}}{4}\) after hitting the floor. Fraction of energy of ball lost in the impact is :-
266608
If force (F) work (W) and velocity (v) are taken as fundamental quantities, the dimensional formula of time (T) is :
1 \(\left[W^1 F^{-1} v^{-1}\right]\)
2 \(\left[W^{-1} F^2 y^{-1}\right]\)
3 \(\left[W^1 F^1 v^{-2}\right]\)
4 \(\left[W^1 F^1 w^1\right]\)
Explanation:
a Let \(\mathbf{T}=\mathrm{F}^a \mathrm{~W}^{\mathrm{b}} \mathrm{v}^{\mathrm{c}}\) Equating powers of [M], [L] and [T] on both sides \(0=a+b\) or \(a=-b\) \(0=\mathrm{a}+2 \mathrm{~b}+\mathrm{c} \quad\) or \(\mathrm{c}=-\mathrm{a}-2 \mathrm{~b}-\mathrm{a}+2 \mathrm{a}=\mathrm{a}\) \(1=-2 a-2 b-c=-2 a-c\) or \(\mathrm{v}=-1\) \(\therefore a=c=-1\) and \(b=-a=+1\) \(\therefore \quad \mathrm{T}=\left[\mathrm{F}^{-1} \mathrm{~W}^1 \mathrm{v}^{-1}\right]\) 1.6 mole So a a mount of HCl Needs \(=1.6 \times 36.5\)