263934 Match the following: | Column-I | Column-II | |------------|--------------| | A. Capacitance | P. Volt (ampere)\(^{-1}\) | | B. Magnetic induction | Q. Volt-sec (ampere)\(^{-1}\) | | C. Inductance | R. Newton (ampere)\(^{-1}\) (metre)\(^{-1}\) | | D. Resistance | S. coulomb\(^2\) (joule)\(^{-1}\) |
263936 Two beams \(A\) and \(B\) of plane polarized light with mutually perpendicular planes of polarization are seen through a polaroid. From the position when the beam \(A\) has maximum intensity land beam \(B\) has zero intensity), a rotation of polaroid through \(30^{\circ}\) makes the two beams appear equally bright. if the initial intensities of the two beams are \(I_A\) and \(I_B\) respectively, then \(\frac{I_A}{I_B}\) equals:
263934 Match the following: | Column-I | Column-II | |------------|--------------| | A. Capacitance | P. Volt (ampere)\(^{-1}\) | | B. Magnetic induction | Q. Volt-sec (ampere)\(^{-1}\) | | C. Inductance | R. Newton (ampere)\(^{-1}\) (metre)\(^{-1}\) | | D. Resistance | S. coulomb\(^2\) (joule)\(^{-1}\) |
263936 Two beams \(A\) and \(B\) of plane polarized light with mutually perpendicular planes of polarization are seen through a polaroid. From the position when the beam \(A\) has maximum intensity land beam \(B\) has zero intensity), a rotation of polaroid through \(30^{\circ}\) makes the two beams appear equally bright. if the initial intensities of the two beams are \(I_A\) and \(I_B\) respectively, then \(\frac{I_A}{I_B}\) equals:
263934 Match the following: | Column-I | Column-II | |------------|--------------| | A. Capacitance | P. Volt (ampere)\(^{-1}\) | | B. Magnetic induction | Q. Volt-sec (ampere)\(^{-1}\) | | C. Inductance | R. Newton (ampere)\(^{-1}\) (metre)\(^{-1}\) | | D. Resistance | S. coulomb\(^2\) (joule)\(^{-1}\) |
263936 Two beams \(A\) and \(B\) of plane polarized light with mutually perpendicular planes of polarization are seen through a polaroid. From the position when the beam \(A\) has maximum intensity land beam \(B\) has zero intensity), a rotation of polaroid through \(30^{\circ}\) makes the two beams appear equally bright. if the initial intensities of the two beams are \(I_A\) and \(I_B\) respectively, then \(\frac{I_A}{I_B}\) equals:
263934 Match the following: | Column-I | Column-II | |------------|--------------| | A. Capacitance | P. Volt (ampere)\(^{-1}\) | | B. Magnetic induction | Q. Volt-sec (ampere)\(^{-1}\) | | C. Inductance | R. Newton (ampere)\(^{-1}\) (metre)\(^{-1}\) | | D. Resistance | S. coulomb\(^2\) (joule)\(^{-1}\) |
263936 Two beams \(A\) and \(B\) of plane polarized light with mutually perpendicular planes of polarization are seen through a polaroid. From the position when the beam \(A\) has maximum intensity land beam \(B\) has zero intensity), a rotation of polaroid through \(30^{\circ}\) makes the two beams appear equally bright. if the initial intensities of the two beams are \(I_A\) and \(I_B\) respectively, then \(\frac{I_A}{I_B}\) equals: