263954
If \(\mathrm{Li}^7+{ }_1 \mathrm{H}^1 \rightarrow{ }_4 \mathrm{Be}^s\) mass of \(\mathrm{Li}^7=7.0020 \mathrm{u}\) mass of \({ }_1 \mathrm{H}^1\) is 1.0027 u and mass of \({ }_4 \mathrm{Be}^8\) is 8.0016 u . Then energy evolved is:
1 2.89 colorie
2 2.89 eV
3 2.89 MeV
4 2.89 kJ .
Explanation:
c The mass defect is \[ \begin{aligned} \Delta m & =\text { mass }\left[\left(\mathrm{L}^{\mathrm{L}} \mathrm{i}^7\right)+\left({ }_1 \mathrm{H}^1\right)-\left({ }_4 \mathrm{~B}^8\right)\right] \\ & =(7.0020+1.0027)-8.0016=0.0030 \\ E & =\Delta \mathrm{m} \times 931=0.003 \times 931 \\ & =2.89 \mathrm{MeV} \end{aligned} \]
**NCERT-XII-II-311**
TEST SERIES (PHYSICS FST)
263955
Zero error belongs to the category of:
1 Randomerroronly
2 Systematic error only
3 Neither systematic error nor-random error
4 Systematic and radom error both
Explanation:
b Systematic errors only
**Experimental Skills**
TEST SERIES (PHYSICS FST)
263957
The KE and PE of a particle executing SHM with amplitude \(A\) will be equal when its displacement is:
1 \(A \sqrt{2}\)
2 \(\mathrm{A} / 2\)
3 A/ \(\sqrt{2}\)
4 \(A \sqrt{2 / 3}\)
Explanation:
c \[ \begin{aligned} & K=\frac{1}{2} m \omega^2\left(A^2-y^2\right) \\ & U=\frac{1}{2} m \omega^2 y^2 \end{aligned} \] \(K=U\) or \(\frac{1}{2} m \omega^2\left(A^2-y^2\right)=\frac{1}{2} m \omega^2 y^2\) \[ 2 y^2=\mathrm{A}^2 \text { or } \mathrm{y}=\frac{\mathrm{A}}{\sqrt{2}} \]
**NCERT-XI-II-268**
TEST SERIES (PHYSICS FST)
263958
A particle is executing SHM. Then, the graph of velocity as a function of displacement is afan:
263954
If \(\mathrm{Li}^7+{ }_1 \mathrm{H}^1 \rightarrow{ }_4 \mathrm{Be}^s\) mass of \(\mathrm{Li}^7=7.0020 \mathrm{u}\) mass of \({ }_1 \mathrm{H}^1\) is 1.0027 u and mass of \({ }_4 \mathrm{Be}^8\) is 8.0016 u . Then energy evolved is:
1 2.89 colorie
2 2.89 eV
3 2.89 MeV
4 2.89 kJ .
Explanation:
c The mass defect is \[ \begin{aligned} \Delta m & =\text { mass }\left[\left(\mathrm{L}^{\mathrm{L}} \mathrm{i}^7\right)+\left({ }_1 \mathrm{H}^1\right)-\left({ }_4 \mathrm{~B}^8\right)\right] \\ & =(7.0020+1.0027)-8.0016=0.0030 \\ E & =\Delta \mathrm{m} \times 931=0.003 \times 931 \\ & =2.89 \mathrm{MeV} \end{aligned} \]
**NCERT-XII-II-311**
TEST SERIES (PHYSICS FST)
263955
Zero error belongs to the category of:
1 Randomerroronly
2 Systematic error only
3 Neither systematic error nor-random error
4 Systematic and radom error both
Explanation:
b Systematic errors only
**Experimental Skills**
TEST SERIES (PHYSICS FST)
263957
The KE and PE of a particle executing SHM with amplitude \(A\) will be equal when its displacement is:
1 \(A \sqrt{2}\)
2 \(\mathrm{A} / 2\)
3 A/ \(\sqrt{2}\)
4 \(A \sqrt{2 / 3}\)
Explanation:
c \[ \begin{aligned} & K=\frac{1}{2} m \omega^2\left(A^2-y^2\right) \\ & U=\frac{1}{2} m \omega^2 y^2 \end{aligned} \] \(K=U\) or \(\frac{1}{2} m \omega^2\left(A^2-y^2\right)=\frac{1}{2} m \omega^2 y^2\) \[ 2 y^2=\mathrm{A}^2 \text { or } \mathrm{y}=\frac{\mathrm{A}}{\sqrt{2}} \]
**NCERT-XI-II-268**
TEST SERIES (PHYSICS FST)
263958
A particle is executing SHM. Then, the graph of velocity as a function of displacement is afan:
263954
If \(\mathrm{Li}^7+{ }_1 \mathrm{H}^1 \rightarrow{ }_4 \mathrm{Be}^s\) mass of \(\mathrm{Li}^7=7.0020 \mathrm{u}\) mass of \({ }_1 \mathrm{H}^1\) is 1.0027 u and mass of \({ }_4 \mathrm{Be}^8\) is 8.0016 u . Then energy evolved is:
1 2.89 colorie
2 2.89 eV
3 2.89 MeV
4 2.89 kJ .
Explanation:
c The mass defect is \[ \begin{aligned} \Delta m & =\text { mass }\left[\left(\mathrm{L}^{\mathrm{L}} \mathrm{i}^7\right)+\left({ }_1 \mathrm{H}^1\right)-\left({ }_4 \mathrm{~B}^8\right)\right] \\ & =(7.0020+1.0027)-8.0016=0.0030 \\ E & =\Delta \mathrm{m} \times 931=0.003 \times 931 \\ & =2.89 \mathrm{MeV} \end{aligned} \]
**NCERT-XII-II-311**
TEST SERIES (PHYSICS FST)
263955
Zero error belongs to the category of:
1 Randomerroronly
2 Systematic error only
3 Neither systematic error nor-random error
4 Systematic and radom error both
Explanation:
b Systematic errors only
**Experimental Skills**
TEST SERIES (PHYSICS FST)
263957
The KE and PE of a particle executing SHM with amplitude \(A\) will be equal when its displacement is:
1 \(A \sqrt{2}\)
2 \(\mathrm{A} / 2\)
3 A/ \(\sqrt{2}\)
4 \(A \sqrt{2 / 3}\)
Explanation:
c \[ \begin{aligned} & K=\frac{1}{2} m \omega^2\left(A^2-y^2\right) \\ & U=\frac{1}{2} m \omega^2 y^2 \end{aligned} \] \(K=U\) or \(\frac{1}{2} m \omega^2\left(A^2-y^2\right)=\frac{1}{2} m \omega^2 y^2\) \[ 2 y^2=\mathrm{A}^2 \text { or } \mathrm{y}=\frac{\mathrm{A}}{\sqrt{2}} \]
**NCERT-XI-II-268**
TEST SERIES (PHYSICS FST)
263958
A particle is executing SHM. Then, the graph of velocity as a function of displacement is afan:
263954
If \(\mathrm{Li}^7+{ }_1 \mathrm{H}^1 \rightarrow{ }_4 \mathrm{Be}^s\) mass of \(\mathrm{Li}^7=7.0020 \mathrm{u}\) mass of \({ }_1 \mathrm{H}^1\) is 1.0027 u and mass of \({ }_4 \mathrm{Be}^8\) is 8.0016 u . Then energy evolved is:
1 2.89 colorie
2 2.89 eV
3 2.89 MeV
4 2.89 kJ .
Explanation:
c The mass defect is \[ \begin{aligned} \Delta m & =\text { mass }\left[\left(\mathrm{L}^{\mathrm{L}} \mathrm{i}^7\right)+\left({ }_1 \mathrm{H}^1\right)-\left({ }_4 \mathrm{~B}^8\right)\right] \\ & =(7.0020+1.0027)-8.0016=0.0030 \\ E & =\Delta \mathrm{m} \times 931=0.003 \times 931 \\ & =2.89 \mathrm{MeV} \end{aligned} \]
**NCERT-XII-II-311**
TEST SERIES (PHYSICS FST)
263955
Zero error belongs to the category of:
1 Randomerroronly
2 Systematic error only
3 Neither systematic error nor-random error
4 Systematic and radom error both
Explanation:
b Systematic errors only
**Experimental Skills**
TEST SERIES (PHYSICS FST)
263957
The KE and PE of a particle executing SHM with amplitude \(A\) will be equal when its displacement is:
1 \(A \sqrt{2}\)
2 \(\mathrm{A} / 2\)
3 A/ \(\sqrt{2}\)
4 \(A \sqrt{2 / 3}\)
Explanation:
c \[ \begin{aligned} & K=\frac{1}{2} m \omega^2\left(A^2-y^2\right) \\ & U=\frac{1}{2} m \omega^2 y^2 \end{aligned} \] \(K=U\) or \(\frac{1}{2} m \omega^2\left(A^2-y^2\right)=\frac{1}{2} m \omega^2 y^2\) \[ 2 y^2=\mathrm{A}^2 \text { or } \mathrm{y}=\frac{\mathrm{A}}{\sqrt{2}} \]
**NCERT-XI-II-268**
TEST SERIES (PHYSICS FST)
263958
A particle is executing SHM. Then, the graph of velocity as a function of displacement is afan: