Ionic Equilibrium, Arrhenius Theory
Ionic Equilibrium

229343 At $527^{\circ} \mathrm{C}$ temperature the activation energy is 54.7 $\mathrm{KJ} / \mathrm{mole}$. The value of Arrhenius factor is $4 \times 10^{10}$. The rate constant will be

1 $12.28 \times 10^{-7}$
2 $10.76 \times 10^6$
3 $10^7$
4 $10.76 \times 10^{-6}$
Ionic Equilibrium

229346 In an endothermic reaction $A \rightarrow B$, the activation energy is $10 \mathrm{kcal} \mathrm{mol}^{-1}$ and enthalpy of reaction is $+5 \mathrm{kcal} \mathrm{mol}^{-1}$. The activation energy for the backward reaction is

1 $20 \mathrm{kcal} \mathrm{mol}^{-1}$
2 $10 \mathrm{kcal} \mathrm{mol}^{-1}$
3 $5 \mathrm{kcal} \mathrm{moll}^{-1}$
4 $15 \mathrm{kcal} \mathrm{mol}^{-1}$
Ionic Equilibrium

229348 In terms of Arrhenius equation, $\mathbf{k}=\mathrm{Ae}^{-\mathrm{E}_2 / \mathrm{RT}}$ the temperature dependence of rate constant (k) of a chemical reaction is written. Then, the activation energy $\left(E_a\right.$ ) of the reaction can be calculate by plotting.

1 $\log \mathrm{kvs} \frac{1}{\log \mathrm{T}}$
2 $\log \mathrm{kvs} \frac{1}{\mathrm{~T}}$
3 $\mathrm{kvs} \mathrm{T}$
4 $\mathrm{kvs} \frac{1}{\log \mathrm{T}}$
Ionic Equilibrium

229350 The Arrhenius equation gives the dependence of the rate constant of a chemical reaction of the absolute temperature and may be expressed as $K=A e^{-E_2 / R T}$. If the unit of $K$ is $s^{-1}$ the unit of A will be

1 $\mathrm{kJ} \mathrm{mol}^{-1}$
2 $\mathrm{mol}^{-1}$
3 $\mathrm{s}^{-1}$
4 $\mathrm{K}$ (kelvin)
Ionic Equilibrium

229352 According to Arrhenius equation. The slope of $\log K$ vs $\frac{1}{\mathrm{~T}}$ plot is.....

1 $\frac{-\mathrm{E}_{\mathrm{a}}}{2.303}$
2 $\frac{-E_a}{2.303 R}$
3 $\frac{-\mathrm{E}_{\mathrm{a}}}{2.303 \mathrm{RT}}$
4 $\frac{\mathrm{E}_{\mathrm{a}}}{2.303 \mathrm{RT}}$
Ionic Equilibrium

229343 At $527^{\circ} \mathrm{C}$ temperature the activation energy is 54.7 $\mathrm{KJ} / \mathrm{mole}$. The value of Arrhenius factor is $4 \times 10^{10}$. The rate constant will be

1 $12.28 \times 10^{-7}$
2 $10.76 \times 10^6$
3 $10^7$
4 $10.76 \times 10^{-6}$
Ionic Equilibrium

229346 In an endothermic reaction $A \rightarrow B$, the activation energy is $10 \mathrm{kcal} \mathrm{mol}^{-1}$ and enthalpy of reaction is $+5 \mathrm{kcal} \mathrm{mol}^{-1}$. The activation energy for the backward reaction is

1 $20 \mathrm{kcal} \mathrm{mol}^{-1}$
2 $10 \mathrm{kcal} \mathrm{mol}^{-1}$
3 $5 \mathrm{kcal} \mathrm{moll}^{-1}$
4 $15 \mathrm{kcal} \mathrm{mol}^{-1}$
Ionic Equilibrium

229348 In terms of Arrhenius equation, $\mathbf{k}=\mathrm{Ae}^{-\mathrm{E}_2 / \mathrm{RT}}$ the temperature dependence of rate constant (k) of a chemical reaction is written. Then, the activation energy $\left(E_a\right.$ ) of the reaction can be calculate by plotting.

1 $\log \mathrm{kvs} \frac{1}{\log \mathrm{T}}$
2 $\log \mathrm{kvs} \frac{1}{\mathrm{~T}}$
3 $\mathrm{kvs} \mathrm{T}$
4 $\mathrm{kvs} \frac{1}{\log \mathrm{T}}$
Ionic Equilibrium

229350 The Arrhenius equation gives the dependence of the rate constant of a chemical reaction of the absolute temperature and may be expressed as $K=A e^{-E_2 / R T}$. If the unit of $K$ is $s^{-1}$ the unit of A will be

1 $\mathrm{kJ} \mathrm{mol}^{-1}$
2 $\mathrm{mol}^{-1}$
3 $\mathrm{s}^{-1}$
4 $\mathrm{K}$ (kelvin)
Ionic Equilibrium

229352 According to Arrhenius equation. The slope of $\log K$ vs $\frac{1}{\mathrm{~T}}$ plot is.....

1 $\frac{-\mathrm{E}_{\mathrm{a}}}{2.303}$
2 $\frac{-E_a}{2.303 R}$
3 $\frac{-\mathrm{E}_{\mathrm{a}}}{2.303 \mathrm{RT}}$
4 $\frac{\mathrm{E}_{\mathrm{a}}}{2.303 \mathrm{RT}}$
Ionic Equilibrium

229343 At $527^{\circ} \mathrm{C}$ temperature the activation energy is 54.7 $\mathrm{KJ} / \mathrm{mole}$. The value of Arrhenius factor is $4 \times 10^{10}$. The rate constant will be

1 $12.28 \times 10^{-7}$
2 $10.76 \times 10^6$
3 $10^7$
4 $10.76 \times 10^{-6}$
Ionic Equilibrium

229346 In an endothermic reaction $A \rightarrow B$, the activation energy is $10 \mathrm{kcal} \mathrm{mol}^{-1}$ and enthalpy of reaction is $+5 \mathrm{kcal} \mathrm{mol}^{-1}$. The activation energy for the backward reaction is

1 $20 \mathrm{kcal} \mathrm{mol}^{-1}$
2 $10 \mathrm{kcal} \mathrm{mol}^{-1}$
3 $5 \mathrm{kcal} \mathrm{moll}^{-1}$
4 $15 \mathrm{kcal} \mathrm{mol}^{-1}$
Ionic Equilibrium

229348 In terms of Arrhenius equation, $\mathbf{k}=\mathrm{Ae}^{-\mathrm{E}_2 / \mathrm{RT}}$ the temperature dependence of rate constant (k) of a chemical reaction is written. Then, the activation energy $\left(E_a\right.$ ) of the reaction can be calculate by plotting.

1 $\log \mathrm{kvs} \frac{1}{\log \mathrm{T}}$
2 $\log \mathrm{kvs} \frac{1}{\mathrm{~T}}$
3 $\mathrm{kvs} \mathrm{T}$
4 $\mathrm{kvs} \frac{1}{\log \mathrm{T}}$
Ionic Equilibrium

229350 The Arrhenius equation gives the dependence of the rate constant of a chemical reaction of the absolute temperature and may be expressed as $K=A e^{-E_2 / R T}$. If the unit of $K$ is $s^{-1}$ the unit of A will be

1 $\mathrm{kJ} \mathrm{mol}^{-1}$
2 $\mathrm{mol}^{-1}$
3 $\mathrm{s}^{-1}$
4 $\mathrm{K}$ (kelvin)
Ionic Equilibrium

229352 According to Arrhenius equation. The slope of $\log K$ vs $\frac{1}{\mathrm{~T}}$ plot is.....

1 $\frac{-\mathrm{E}_{\mathrm{a}}}{2.303}$
2 $\frac{-E_a}{2.303 R}$
3 $\frac{-\mathrm{E}_{\mathrm{a}}}{2.303 \mathrm{RT}}$
4 $\frac{\mathrm{E}_{\mathrm{a}}}{2.303 \mathrm{RT}}$
Ionic Equilibrium

229343 At $527^{\circ} \mathrm{C}$ temperature the activation energy is 54.7 $\mathrm{KJ} / \mathrm{mole}$. The value of Arrhenius factor is $4 \times 10^{10}$. The rate constant will be

1 $12.28 \times 10^{-7}$
2 $10.76 \times 10^6$
3 $10^7$
4 $10.76 \times 10^{-6}$
Ionic Equilibrium

229346 In an endothermic reaction $A \rightarrow B$, the activation energy is $10 \mathrm{kcal} \mathrm{mol}^{-1}$ and enthalpy of reaction is $+5 \mathrm{kcal} \mathrm{mol}^{-1}$. The activation energy for the backward reaction is

1 $20 \mathrm{kcal} \mathrm{mol}^{-1}$
2 $10 \mathrm{kcal} \mathrm{mol}^{-1}$
3 $5 \mathrm{kcal} \mathrm{moll}^{-1}$
4 $15 \mathrm{kcal} \mathrm{mol}^{-1}$
Ionic Equilibrium

229348 In terms of Arrhenius equation, $\mathbf{k}=\mathrm{Ae}^{-\mathrm{E}_2 / \mathrm{RT}}$ the temperature dependence of rate constant (k) of a chemical reaction is written. Then, the activation energy $\left(E_a\right.$ ) of the reaction can be calculate by plotting.

1 $\log \mathrm{kvs} \frac{1}{\log \mathrm{T}}$
2 $\log \mathrm{kvs} \frac{1}{\mathrm{~T}}$
3 $\mathrm{kvs} \mathrm{T}$
4 $\mathrm{kvs} \frac{1}{\log \mathrm{T}}$
Ionic Equilibrium

229350 The Arrhenius equation gives the dependence of the rate constant of a chemical reaction of the absolute temperature and may be expressed as $K=A e^{-E_2 / R T}$. If the unit of $K$ is $s^{-1}$ the unit of A will be

1 $\mathrm{kJ} \mathrm{mol}^{-1}$
2 $\mathrm{mol}^{-1}$
3 $\mathrm{s}^{-1}$
4 $\mathrm{K}$ (kelvin)
Ionic Equilibrium

229352 According to Arrhenius equation. The slope of $\log K$ vs $\frac{1}{\mathrm{~T}}$ plot is.....

1 $\frac{-\mathrm{E}_{\mathrm{a}}}{2.303}$
2 $\frac{-E_a}{2.303 R}$
3 $\frac{-\mathrm{E}_{\mathrm{a}}}{2.303 \mathrm{RT}}$
4 $\frac{\mathrm{E}_{\mathrm{a}}}{2.303 \mathrm{RT}}$
Ionic Equilibrium

229343 At $527^{\circ} \mathrm{C}$ temperature the activation energy is 54.7 $\mathrm{KJ} / \mathrm{mole}$. The value of Arrhenius factor is $4 \times 10^{10}$. The rate constant will be

1 $12.28 \times 10^{-7}$
2 $10.76 \times 10^6$
3 $10^7$
4 $10.76 \times 10^{-6}$
Ionic Equilibrium

229346 In an endothermic reaction $A \rightarrow B$, the activation energy is $10 \mathrm{kcal} \mathrm{mol}^{-1}$ and enthalpy of reaction is $+5 \mathrm{kcal} \mathrm{mol}^{-1}$. The activation energy for the backward reaction is

1 $20 \mathrm{kcal} \mathrm{mol}^{-1}$
2 $10 \mathrm{kcal} \mathrm{mol}^{-1}$
3 $5 \mathrm{kcal} \mathrm{moll}^{-1}$
4 $15 \mathrm{kcal} \mathrm{mol}^{-1}$
Ionic Equilibrium

229348 In terms of Arrhenius equation, $\mathbf{k}=\mathrm{Ae}^{-\mathrm{E}_2 / \mathrm{RT}}$ the temperature dependence of rate constant (k) of a chemical reaction is written. Then, the activation energy $\left(E_a\right.$ ) of the reaction can be calculate by plotting.

1 $\log \mathrm{kvs} \frac{1}{\log \mathrm{T}}$
2 $\log \mathrm{kvs} \frac{1}{\mathrm{~T}}$
3 $\mathrm{kvs} \mathrm{T}$
4 $\mathrm{kvs} \frac{1}{\log \mathrm{T}}$
Ionic Equilibrium

229350 The Arrhenius equation gives the dependence of the rate constant of a chemical reaction of the absolute temperature and may be expressed as $K=A e^{-E_2 / R T}$. If the unit of $K$ is $s^{-1}$ the unit of A will be

1 $\mathrm{kJ} \mathrm{mol}^{-1}$
2 $\mathrm{mol}^{-1}$
3 $\mathrm{s}^{-1}$
4 $\mathrm{K}$ (kelvin)
Ionic Equilibrium

229352 According to Arrhenius equation. The slope of $\log K$ vs $\frac{1}{\mathrm{~T}}$ plot is.....

1 $\frac{-\mathrm{E}_{\mathrm{a}}}{2.303}$
2 $\frac{-E_a}{2.303 R}$
3 $\frac{-\mathrm{E}_{\mathrm{a}}}{2.303 \mathrm{RT}}$
4 $\frac{\mathrm{E}_{\mathrm{a}}}{2.303 \mathrm{RT}}$