07. EQUILIBRIUM (IONIC) (HM)
178918
\(0.2\,\,M\,\,NaCl\) विलयन में \(AgCl\) की विलेयता होगी \((AgCl\) के लिए \({K_{sp}}\)\( = 1.20 \times {10^{ - 10}})\)
1 \(0.2\,\,M\)
2 \(1.2 \times {10^{ - 10}}\,M\)
3 \(0.2 \times {10^{ - 10}}\,M\)
4 \(0.2 \times {10^{ - 10}}\,M\)
Explanation:
(d) \(\mathop {AgCl}\limits_a \rightleftharpoons \mathop {A{g^ + }}\limits_a + \mathop {C{l^ - }}\limits_a \)
\(\mathop {NaCl}\limits_{0.02} \) \( \rightleftharpoons \) \(\mathop {N{a^ + }}\limits_{0.02\,\,\,\,\,} \,\, + \mathop {C{l^ - }}\limits_{0.02\,\,\,\,\,\,} \)
\({K_{sp}}\,\,AgCl = 1.20 \times {10^{ - 10}}\)
\({K_{sp}}\,\,AgCl = [A{g^ + }]\,\,[C{l^ - }]\)\( = a \times [a + 0.2]\) \( = {a^2} + 0.2a\)
\({a^2}\) बहुत कम है इसलिए इसे नगण्य मान सकते हैं
\({K_{sp}}\,\,AgCl = 0.2a\)
\(1.20 \times {10^{ - 10}} = 0.2a\)
\(a = \frac{{1.20 \times {{10}^{ - 10}}}}{{0.20}} = 6 \times {10^{ - 10}}\) मोल