7 RBTS PAPER(CHEMISTRY)
7 RBTS PAPER

164258 What would be the rate equation of the reaction, \(A+B \rightarrow\) Products, If following data is collected experimentally :

\hline Exp.Conc. initial [a]Conc. initial [B]Initial rate (r)
1\(0.1 \mathrm{M}\)\(1.0 \mathrm{M}\)\(2.1 \times 10^{-3}\)
2\(0.2 \mathrm{M}\)\(1.0 \mathrm{M}\)\(8.4 \times 10^{-3}\)
3\(0.2 \mathrm{M}\)\(2.0 \mathrm{M}\)\(8.4 \times 10^{-3}\)
\hline

1 \(r=k[A]^2\)
2 \(r=k[B]^2\)
3 \(r=k[A]^2[B]^1\)
4 \(r=k[A]^1[B]^1\)
7 RBTS PAPER

164259 The rate constants of two reactions are \(k_1>k_2\). How are the activation energies of these reactions, \(E_1\) and \(E_2\) related :

1 \(\mathrm{E}_1>\mathrm{E}_2\)
2 \(\mathrm{E}_1<\mathrm{E}_2\)
3 \(\mathrm{E}_1=\mathrm{E}_2\)
4 Cannot be decided
7 RBTS PAPER

164260 The ratio of time for \(50 \%\) and \(\mathbf{9 0} \%\) completion of a first order reaction is :

1 \(1: 2\)
2 \(2: 3\)
3 \(3: 5\)
4 \(3: 10\)
7 RBTS PAPER

164261 For the reaction,
\( \mathrm{H}_2(\mathrm{~g})+\mathrm{Br}_2(\mathrm{~g}) \rightarrow 2 \mathrm{HBr}(\mathrm{g}) \)
the experimental data suggest
\( \text { rate }=\mathbf{k}\left[\mathrm{H}_2\right]\left[\mathrm{Br}_2\right]^{1 / 2} \)
The molecularity and order of the reaction are respectively :

1 \(1, \frac{1}{2}\)
2 1,1
3 \(\frac{3}{2}, \frac{3}{2}\)
4 \(2, \frac{3}{2}\)
7 RBTS PAPER

164262 In the Arrhenius plot of Ink Vs \(\frac{1}{T}\), the slope is \(-2 \times 10^4\). The activation energy of the reaction is approx :

1 \(83 \mathrm{~kJ} / \mathrm{mole}\)
2 \(166 \mathrm{~kJ} / \mathrm{mole}\)
3 \(249 \mathrm{~kJ} / \mathrm{mole}\)
4 \(332 \mathrm{~kJ} / \mathrm{mole}\)
7 RBTS PAPER

164258 What would be the rate equation of the reaction, \(A+B \rightarrow\) Products, If following data is collected experimentally :

\hline Exp.Conc. initial [a]Conc. initial [B]Initial rate (r)
1\(0.1 \mathrm{M}\)\(1.0 \mathrm{M}\)\(2.1 \times 10^{-3}\)
2\(0.2 \mathrm{M}\)\(1.0 \mathrm{M}\)\(8.4 \times 10^{-3}\)
3\(0.2 \mathrm{M}\)\(2.0 \mathrm{M}\)\(8.4 \times 10^{-3}\)
\hline

1 \(r=k[A]^2\)
2 \(r=k[B]^2\)
3 \(r=k[A]^2[B]^1\)
4 \(r=k[A]^1[B]^1\)
7 RBTS PAPER

164259 The rate constants of two reactions are \(k_1>k_2\). How are the activation energies of these reactions, \(E_1\) and \(E_2\) related :

1 \(\mathrm{E}_1>\mathrm{E}_2\)
2 \(\mathrm{E}_1<\mathrm{E}_2\)
3 \(\mathrm{E}_1=\mathrm{E}_2\)
4 Cannot be decided
7 RBTS PAPER

164260 The ratio of time for \(50 \%\) and \(\mathbf{9 0} \%\) completion of a first order reaction is :

1 \(1: 2\)
2 \(2: 3\)
3 \(3: 5\)
4 \(3: 10\)
7 RBTS PAPER

164261 For the reaction,
\( \mathrm{H}_2(\mathrm{~g})+\mathrm{Br}_2(\mathrm{~g}) \rightarrow 2 \mathrm{HBr}(\mathrm{g}) \)
the experimental data suggest
\( \text { rate }=\mathbf{k}\left[\mathrm{H}_2\right]\left[\mathrm{Br}_2\right]^{1 / 2} \)
The molecularity and order of the reaction are respectively :

1 \(1, \frac{1}{2}\)
2 1,1
3 \(\frac{3}{2}, \frac{3}{2}\)
4 \(2, \frac{3}{2}\)
7 RBTS PAPER

164262 In the Arrhenius plot of Ink Vs \(\frac{1}{T}\), the slope is \(-2 \times 10^4\). The activation energy of the reaction is approx :

1 \(83 \mathrm{~kJ} / \mathrm{mole}\)
2 \(166 \mathrm{~kJ} / \mathrm{mole}\)
3 \(249 \mathrm{~kJ} / \mathrm{mole}\)
4 \(332 \mathrm{~kJ} / \mathrm{mole}\)
7 RBTS PAPER

164258 What would be the rate equation of the reaction, \(A+B \rightarrow\) Products, If following data is collected experimentally :

\hline Exp.Conc. initial [a]Conc. initial [B]Initial rate (r)
1\(0.1 \mathrm{M}\)\(1.0 \mathrm{M}\)\(2.1 \times 10^{-3}\)
2\(0.2 \mathrm{M}\)\(1.0 \mathrm{M}\)\(8.4 \times 10^{-3}\)
3\(0.2 \mathrm{M}\)\(2.0 \mathrm{M}\)\(8.4 \times 10^{-3}\)
\hline

1 \(r=k[A]^2\)
2 \(r=k[B]^2\)
3 \(r=k[A]^2[B]^1\)
4 \(r=k[A]^1[B]^1\)
7 RBTS PAPER

164259 The rate constants of two reactions are \(k_1>k_2\). How are the activation energies of these reactions, \(E_1\) and \(E_2\) related :

1 \(\mathrm{E}_1>\mathrm{E}_2\)
2 \(\mathrm{E}_1<\mathrm{E}_2\)
3 \(\mathrm{E}_1=\mathrm{E}_2\)
4 Cannot be decided
7 RBTS PAPER

164260 The ratio of time for \(50 \%\) and \(\mathbf{9 0} \%\) completion of a first order reaction is :

1 \(1: 2\)
2 \(2: 3\)
3 \(3: 5\)
4 \(3: 10\)
7 RBTS PAPER

164261 For the reaction,
\( \mathrm{H}_2(\mathrm{~g})+\mathrm{Br}_2(\mathrm{~g}) \rightarrow 2 \mathrm{HBr}(\mathrm{g}) \)
the experimental data suggest
\( \text { rate }=\mathbf{k}\left[\mathrm{H}_2\right]\left[\mathrm{Br}_2\right]^{1 / 2} \)
The molecularity and order of the reaction are respectively :

1 \(1, \frac{1}{2}\)
2 1,1
3 \(\frac{3}{2}, \frac{3}{2}\)
4 \(2, \frac{3}{2}\)
7 RBTS PAPER

164262 In the Arrhenius plot of Ink Vs \(\frac{1}{T}\), the slope is \(-2 \times 10^4\). The activation energy of the reaction is approx :

1 \(83 \mathrm{~kJ} / \mathrm{mole}\)
2 \(166 \mathrm{~kJ} / \mathrm{mole}\)
3 \(249 \mathrm{~kJ} / \mathrm{mole}\)
4 \(332 \mathrm{~kJ} / \mathrm{mole}\)
7 RBTS PAPER

164258 What would be the rate equation of the reaction, \(A+B \rightarrow\) Products, If following data is collected experimentally :

\hline Exp.Conc. initial [a]Conc. initial [B]Initial rate (r)
1\(0.1 \mathrm{M}\)\(1.0 \mathrm{M}\)\(2.1 \times 10^{-3}\)
2\(0.2 \mathrm{M}\)\(1.0 \mathrm{M}\)\(8.4 \times 10^{-3}\)
3\(0.2 \mathrm{M}\)\(2.0 \mathrm{M}\)\(8.4 \times 10^{-3}\)
\hline

1 \(r=k[A]^2\)
2 \(r=k[B]^2\)
3 \(r=k[A]^2[B]^1\)
4 \(r=k[A]^1[B]^1\)
7 RBTS PAPER

164259 The rate constants of two reactions are \(k_1>k_2\). How are the activation energies of these reactions, \(E_1\) and \(E_2\) related :

1 \(\mathrm{E}_1>\mathrm{E}_2\)
2 \(\mathrm{E}_1<\mathrm{E}_2\)
3 \(\mathrm{E}_1=\mathrm{E}_2\)
4 Cannot be decided
7 RBTS PAPER

164260 The ratio of time for \(50 \%\) and \(\mathbf{9 0} \%\) completion of a first order reaction is :

1 \(1: 2\)
2 \(2: 3\)
3 \(3: 5\)
4 \(3: 10\)
7 RBTS PAPER

164261 For the reaction,
\( \mathrm{H}_2(\mathrm{~g})+\mathrm{Br}_2(\mathrm{~g}) \rightarrow 2 \mathrm{HBr}(\mathrm{g}) \)
the experimental data suggest
\( \text { rate }=\mathbf{k}\left[\mathrm{H}_2\right]\left[\mathrm{Br}_2\right]^{1 / 2} \)
The molecularity and order of the reaction are respectively :

1 \(1, \frac{1}{2}\)
2 1,1
3 \(\frac{3}{2}, \frac{3}{2}\)
4 \(2, \frac{3}{2}\)
7 RBTS PAPER

164262 In the Arrhenius plot of Ink Vs \(\frac{1}{T}\), the slope is \(-2 \times 10^4\). The activation energy of the reaction is approx :

1 \(83 \mathrm{~kJ} / \mathrm{mole}\)
2 \(166 \mathrm{~kJ} / \mathrm{mole}\)
3 \(249 \mathrm{~kJ} / \mathrm{mole}\)
4 \(332 \mathrm{~kJ} / \mathrm{mole}\)
7 RBTS PAPER

164258 What would be the rate equation of the reaction, \(A+B \rightarrow\) Products, If following data is collected experimentally :

\hline Exp.Conc. initial [a]Conc. initial [B]Initial rate (r)
1\(0.1 \mathrm{M}\)\(1.0 \mathrm{M}\)\(2.1 \times 10^{-3}\)
2\(0.2 \mathrm{M}\)\(1.0 \mathrm{M}\)\(8.4 \times 10^{-3}\)
3\(0.2 \mathrm{M}\)\(2.0 \mathrm{M}\)\(8.4 \times 10^{-3}\)
\hline

1 \(r=k[A]^2\)
2 \(r=k[B]^2\)
3 \(r=k[A]^2[B]^1\)
4 \(r=k[A]^1[B]^1\)
7 RBTS PAPER

164259 The rate constants of two reactions are \(k_1>k_2\). How are the activation energies of these reactions, \(E_1\) and \(E_2\) related :

1 \(\mathrm{E}_1>\mathrm{E}_2\)
2 \(\mathrm{E}_1<\mathrm{E}_2\)
3 \(\mathrm{E}_1=\mathrm{E}_2\)
4 Cannot be decided
7 RBTS PAPER

164260 The ratio of time for \(50 \%\) and \(\mathbf{9 0} \%\) completion of a first order reaction is :

1 \(1: 2\)
2 \(2: 3\)
3 \(3: 5\)
4 \(3: 10\)
7 RBTS PAPER

164261 For the reaction,
\( \mathrm{H}_2(\mathrm{~g})+\mathrm{Br}_2(\mathrm{~g}) \rightarrow 2 \mathrm{HBr}(\mathrm{g}) \)
the experimental data suggest
\( \text { rate }=\mathbf{k}\left[\mathrm{H}_2\right]\left[\mathrm{Br}_2\right]^{1 / 2} \)
The molecularity and order of the reaction are respectively :

1 \(1, \frac{1}{2}\)
2 1,1
3 \(\frac{3}{2}, \frac{3}{2}\)
4 \(2, \frac{3}{2}\)
7 RBTS PAPER

164262 In the Arrhenius plot of Ink Vs \(\frac{1}{T}\), the slope is \(-2 \times 10^4\). The activation energy of the reaction is approx :

1 \(83 \mathrm{~kJ} / \mathrm{mole}\)
2 \(166 \mathrm{~kJ} / \mathrm{mole}\)
3 \(249 \mathrm{~kJ} / \mathrm{mole}\)
4 \(332 \mathrm{~kJ} / \mathrm{mole}\)