7 RBTS PAPER(CHEMISTRY)
7 RBTS PAPER

164217 For the reaction \(2 A+3 B+3 / 2 \quad C \rightarrow 3 P\), which statements is correct :

1 \(-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=+\frac{2}{3} \frac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}=-\frac{3}{4} \frac{\mathrm{d}[\mathrm{C}]}{\mathrm{dt}}\)
2 \(-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=\frac{3}{2} \frac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}=\frac{3}{4} \frac{\mathrm{d}[\mathrm{C}]}{\mathrm{dt}}\)
3 \(\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=-\frac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}=\frac{\mathrm{d}[\mathrm{C}]}{\mathrm{dt}}\)
4 \(-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=-\frac{2}{3} \frac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}=-\frac{4}{3} \frac{\mathrm{d}[\mathrm{C}]}{\mathrm{dt}}\)
7 RBTS PAPER

164245 A first order reaction has a rate constant \(1.15 \times 10^{-3} \mathrm{sec}^{-1}\). How long will \(5 \mathrm{gm}\) of this reaction take to reduce to \(3 \mathrm{gm}\). :

1 \(100 \mathrm{sec}\)
2 \(250 \mathrm{sec}\)
3 \(410 \mathrm{sec}\)
4 \(440 \mathrm{sec}\)
7 RBTS PAPER

164239 A first order reaction is completed \(50 \%\) in \(1.26 \times 10^{14}\) sec. How much time would it take to for \(100 \%\) completion :

1 \(1.26 \times 10^{16} \mathrm{sec}\).
2 \(1.26 \times 10^{28} \mathrm{sec}\).
3 Infinite
4 \(2.52 \times 10^{14} \mathrm{sec}\).
7 RBTS PAPER

164215 Calculate the over all order of a reaction which has the rate expression :
a. Rate \(=K(A)^{1 / 2}(B)^{3 / 2}\)
b. Rate \(=K(A)^{3 / 2}(B)^{-1}\)

1 \(2,0.5\)
2 \(3,+2\)
3 \(4,+1\)
4 \(5,+2\)
7 RBTS PAPER

164216 The initial concentration of \(\mathrm{N}_2 \mathrm{O}_5\) in the following first order reaction \(\mathrm{N}_2 \mathrm{O}_5(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_2(\mathrm{~g})+1 / 2 \mathrm{O}_2(\mathrm{~g})\) was \(1.24 \times 10^{-2} \mathrm{~mol} / \mathrm{L}\) at \(318 \mathrm{~K}\). The concentration of \(\mathrm{N}_2 \mathrm{O}_5\) after 60 minutes was \(0.20 \times 10^{-2} \mathrm{~mol} / \mathrm{L}\). Calculate the rate constant of the reaction at 318 \(\mathbf{K}\) :

1 \(0.0304 \mathrm{~min}^{-1}\)
2 \(-0.304 \mathrm{~min}^{-1}\)
3 \(2.534 \mathrm{~min}^{-1}\)
4 \(0.0806 \mathrm{~min}^{-1}\)
7 RBTS PAPER

164217 For the reaction \(2 A+3 B+3 / 2 \quad C \rightarrow 3 P\), which statements is correct :

1 \(-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=+\frac{2}{3} \frac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}=-\frac{3}{4} \frac{\mathrm{d}[\mathrm{C}]}{\mathrm{dt}}\)
2 \(-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=\frac{3}{2} \frac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}=\frac{3}{4} \frac{\mathrm{d}[\mathrm{C}]}{\mathrm{dt}}\)
3 \(\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=-\frac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}=\frac{\mathrm{d}[\mathrm{C}]}{\mathrm{dt}}\)
4 \(-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=-\frac{2}{3} \frac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}=-\frac{4}{3} \frac{\mathrm{d}[\mathrm{C}]}{\mathrm{dt}}\)
7 RBTS PAPER

164245 A first order reaction has a rate constant \(1.15 \times 10^{-3} \mathrm{sec}^{-1}\). How long will \(5 \mathrm{gm}\) of this reaction take to reduce to \(3 \mathrm{gm}\). :

1 \(100 \mathrm{sec}\)
2 \(250 \mathrm{sec}\)
3 \(410 \mathrm{sec}\)
4 \(440 \mathrm{sec}\)
7 RBTS PAPER

164239 A first order reaction is completed \(50 \%\) in \(1.26 \times 10^{14}\) sec. How much time would it take to for \(100 \%\) completion :

1 \(1.26 \times 10^{16} \mathrm{sec}\).
2 \(1.26 \times 10^{28} \mathrm{sec}\).
3 Infinite
4 \(2.52 \times 10^{14} \mathrm{sec}\).
7 RBTS PAPER

164215 Calculate the over all order of a reaction which has the rate expression :
a. Rate \(=K(A)^{1 / 2}(B)^{3 / 2}\)
b. Rate \(=K(A)^{3 / 2}(B)^{-1}\)

1 \(2,0.5\)
2 \(3,+2\)
3 \(4,+1\)
4 \(5,+2\)
7 RBTS PAPER

164216 The initial concentration of \(\mathrm{N}_2 \mathrm{O}_5\) in the following first order reaction \(\mathrm{N}_2 \mathrm{O}_5(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_2(\mathrm{~g})+1 / 2 \mathrm{O}_2(\mathrm{~g})\) was \(1.24 \times 10^{-2} \mathrm{~mol} / \mathrm{L}\) at \(318 \mathrm{~K}\). The concentration of \(\mathrm{N}_2 \mathrm{O}_5\) after 60 minutes was \(0.20 \times 10^{-2} \mathrm{~mol} / \mathrm{L}\). Calculate the rate constant of the reaction at 318 \(\mathbf{K}\) :

1 \(0.0304 \mathrm{~min}^{-1}\)
2 \(-0.304 \mathrm{~min}^{-1}\)
3 \(2.534 \mathrm{~min}^{-1}\)
4 \(0.0806 \mathrm{~min}^{-1}\)
7 RBTS PAPER

164217 For the reaction \(2 A+3 B+3 / 2 \quad C \rightarrow 3 P\), which statements is correct :

1 \(-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=+\frac{2}{3} \frac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}=-\frac{3}{4} \frac{\mathrm{d}[\mathrm{C}]}{\mathrm{dt}}\)
2 \(-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=\frac{3}{2} \frac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}=\frac{3}{4} \frac{\mathrm{d}[\mathrm{C}]}{\mathrm{dt}}\)
3 \(\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=-\frac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}=\frac{\mathrm{d}[\mathrm{C}]}{\mathrm{dt}}\)
4 \(-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=-\frac{2}{3} \frac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}=-\frac{4}{3} \frac{\mathrm{d}[\mathrm{C}]}{\mathrm{dt}}\)
7 RBTS PAPER

164245 A first order reaction has a rate constant \(1.15 \times 10^{-3} \mathrm{sec}^{-1}\). How long will \(5 \mathrm{gm}\) of this reaction take to reduce to \(3 \mathrm{gm}\). :

1 \(100 \mathrm{sec}\)
2 \(250 \mathrm{sec}\)
3 \(410 \mathrm{sec}\)
4 \(440 \mathrm{sec}\)
7 RBTS PAPER

164239 A first order reaction is completed \(50 \%\) in \(1.26 \times 10^{14}\) sec. How much time would it take to for \(100 \%\) completion :

1 \(1.26 \times 10^{16} \mathrm{sec}\).
2 \(1.26 \times 10^{28} \mathrm{sec}\).
3 Infinite
4 \(2.52 \times 10^{14} \mathrm{sec}\).
7 RBTS PAPER

164215 Calculate the over all order of a reaction which has the rate expression :
a. Rate \(=K(A)^{1 / 2}(B)^{3 / 2}\)
b. Rate \(=K(A)^{3 / 2}(B)^{-1}\)

1 \(2,0.5\)
2 \(3,+2\)
3 \(4,+1\)
4 \(5,+2\)
7 RBTS PAPER

164216 The initial concentration of \(\mathrm{N}_2 \mathrm{O}_5\) in the following first order reaction \(\mathrm{N}_2 \mathrm{O}_5(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_2(\mathrm{~g})+1 / 2 \mathrm{O}_2(\mathrm{~g})\) was \(1.24 \times 10^{-2} \mathrm{~mol} / \mathrm{L}\) at \(318 \mathrm{~K}\). The concentration of \(\mathrm{N}_2 \mathrm{O}_5\) after 60 minutes was \(0.20 \times 10^{-2} \mathrm{~mol} / \mathrm{L}\). Calculate the rate constant of the reaction at 318 \(\mathbf{K}\) :

1 \(0.0304 \mathrm{~min}^{-1}\)
2 \(-0.304 \mathrm{~min}^{-1}\)
3 \(2.534 \mathrm{~min}^{-1}\)
4 \(0.0806 \mathrm{~min}^{-1}\)
7 RBTS PAPER

164217 For the reaction \(2 A+3 B+3 / 2 \quad C \rightarrow 3 P\), which statements is correct :

1 \(-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=+\frac{2}{3} \frac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}=-\frac{3}{4} \frac{\mathrm{d}[\mathrm{C}]}{\mathrm{dt}}\)
2 \(-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=\frac{3}{2} \frac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}=\frac{3}{4} \frac{\mathrm{d}[\mathrm{C}]}{\mathrm{dt}}\)
3 \(\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=-\frac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}=\frac{\mathrm{d}[\mathrm{C}]}{\mathrm{dt}}\)
4 \(-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=-\frac{2}{3} \frac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}=-\frac{4}{3} \frac{\mathrm{d}[\mathrm{C}]}{\mathrm{dt}}\)
7 RBTS PAPER

164245 A first order reaction has a rate constant \(1.15 \times 10^{-3} \mathrm{sec}^{-1}\). How long will \(5 \mathrm{gm}\) of this reaction take to reduce to \(3 \mathrm{gm}\). :

1 \(100 \mathrm{sec}\)
2 \(250 \mathrm{sec}\)
3 \(410 \mathrm{sec}\)
4 \(440 \mathrm{sec}\)
7 RBTS PAPER

164239 A first order reaction is completed \(50 \%\) in \(1.26 \times 10^{14}\) sec. How much time would it take to for \(100 \%\) completion :

1 \(1.26 \times 10^{16} \mathrm{sec}\).
2 \(1.26 \times 10^{28} \mathrm{sec}\).
3 Infinite
4 \(2.52 \times 10^{14} \mathrm{sec}\).
7 RBTS PAPER

164215 Calculate the over all order of a reaction which has the rate expression :
a. Rate \(=K(A)^{1 / 2}(B)^{3 / 2}\)
b. Rate \(=K(A)^{3 / 2}(B)^{-1}\)

1 \(2,0.5\)
2 \(3,+2\)
3 \(4,+1\)
4 \(5,+2\)
7 RBTS PAPER

164216 The initial concentration of \(\mathrm{N}_2 \mathrm{O}_5\) in the following first order reaction \(\mathrm{N}_2 \mathrm{O}_5(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_2(\mathrm{~g})+1 / 2 \mathrm{O}_2(\mathrm{~g})\) was \(1.24 \times 10^{-2} \mathrm{~mol} / \mathrm{L}\) at \(318 \mathrm{~K}\). The concentration of \(\mathrm{N}_2 \mathrm{O}_5\) after 60 minutes was \(0.20 \times 10^{-2} \mathrm{~mol} / \mathrm{L}\). Calculate the rate constant of the reaction at 318 \(\mathbf{K}\) :

1 \(0.0304 \mathrm{~min}^{-1}\)
2 \(-0.304 \mathrm{~min}^{-1}\)
3 \(2.534 \mathrm{~min}^{-1}\)
4 \(0.0806 \mathrm{~min}^{-1}\)
7 RBTS PAPER

164217 For the reaction \(2 A+3 B+3 / 2 \quad C \rightarrow 3 P\), which statements is correct :

1 \(-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=+\frac{2}{3} \frac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}=-\frac{3}{4} \frac{\mathrm{d}[\mathrm{C}]}{\mathrm{dt}}\)
2 \(-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=\frac{3}{2} \frac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}=\frac{3}{4} \frac{\mathrm{d}[\mathrm{C}]}{\mathrm{dt}}\)
3 \(\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=-\frac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}=\frac{\mathrm{d}[\mathrm{C}]}{\mathrm{dt}}\)
4 \(-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=-\frac{2}{3} \frac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}=-\frac{4}{3} \frac{\mathrm{d}[\mathrm{C}]}{\mathrm{dt}}\)
7 RBTS PAPER

164245 A first order reaction has a rate constant \(1.15 \times 10^{-3} \mathrm{sec}^{-1}\). How long will \(5 \mathrm{gm}\) of this reaction take to reduce to \(3 \mathrm{gm}\). :

1 \(100 \mathrm{sec}\)
2 \(250 \mathrm{sec}\)
3 \(410 \mathrm{sec}\)
4 \(440 \mathrm{sec}\)
7 RBTS PAPER

164239 A first order reaction is completed \(50 \%\) in \(1.26 \times 10^{14}\) sec. How much time would it take to for \(100 \%\) completion :

1 \(1.26 \times 10^{16} \mathrm{sec}\).
2 \(1.26 \times 10^{28} \mathrm{sec}\).
3 Infinite
4 \(2.52 \times 10^{14} \mathrm{sec}\).
7 RBTS PAPER

164215 Calculate the over all order of a reaction which has the rate expression :
a. Rate \(=K(A)^{1 / 2}(B)^{3 / 2}\)
b. Rate \(=K(A)^{3 / 2}(B)^{-1}\)

1 \(2,0.5\)
2 \(3,+2\)
3 \(4,+1\)
4 \(5,+2\)
7 RBTS PAPER

164216 The initial concentration of \(\mathrm{N}_2 \mathrm{O}_5\) in the following first order reaction \(\mathrm{N}_2 \mathrm{O}_5(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_2(\mathrm{~g})+1 / 2 \mathrm{O}_2(\mathrm{~g})\) was \(1.24 \times 10^{-2} \mathrm{~mol} / \mathrm{L}\) at \(318 \mathrm{~K}\). The concentration of \(\mathrm{N}_2 \mathrm{O}_5\) after 60 minutes was \(0.20 \times 10^{-2} \mathrm{~mol} / \mathrm{L}\). Calculate the rate constant of the reaction at 318 \(\mathbf{K}\) :

1 \(0.0304 \mathrm{~min}^{-1}\)
2 \(-0.304 \mathrm{~min}^{-1}\)
3 \(2.534 \mathrm{~min}^{-1}\)
4 \(0.0806 \mathrm{~min}^{-1}\)