5 RBTS PAPER(PHYSICS)
5 RBTS PAPER

163969 For a satellite moving in an orbit around the earth, the ratio of kinetic energy to potential energy is :

1 2
2 \(\frac{1}{2}\)
3 \(\frac{1}{\sqrt{2}}\)
4 \(\sqrt{2}\)
5 RBTS PAPER

163970 The value of escape velocity on a certain planet is \(2 \mathrm{~km} / \mathrm{s}\). Then the value of orbital speed for a satellite orbiting close to its surface is :

1 \(12 \mathrm{~km} / \mathrm{s}\)
2 \(1 \mathrm{~km} / \mathrm{s}\)
3 \(\sqrt{2} \mathrm{~km} / \mathrm{s}\)
4 \(2 \sqrt{2} \mathrm{~km} / \mathrm{s}\)
5 RBTS PAPER

163971 Suppose radius of the moon's orbit around the earth is doubled. Its period around the earth will become:

1 \(1 / 2\) times
2 \(\sqrt{2}\) times
3 \(2^{2 / 3}\) times
4 \(2^{3 / 2}\) times
5 RBTS PAPER

163972 A Satellite orbits the earth at a height of \(400 \mathrm{~km}\) above the surface. How much energy must be expended to Rocket for the satellite to come out of the earth's gravitational influence, given that mass of the satellite \(=200 \mathrm{~kg}, M_e=6.0 \times 10^{24} \mathrm{~kg}\), \(R_{\mathrm{e}}=6.0 \times 10^6 \mathrm{~m} \& \mathbf{G}=6.67 \times 10^{-11} \mathrm{Nm}^2 \mathrm{Kg}^{-2}\) :

1 \(5.507 \times 10^2 \mathrm{~J}\)
2 \(5.89 \times 10^9 \mathrm{~J}\)
3 \(2.2 \times 10^4 \mathrm{~J}\)
4 \(1.2 \times 10^7 \mathrm{~J}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
5 RBTS PAPER

163969 For a satellite moving in an orbit around the earth, the ratio of kinetic energy to potential energy is :

1 2
2 \(\frac{1}{2}\)
3 \(\frac{1}{\sqrt{2}}\)
4 \(\sqrt{2}\)
5 RBTS PAPER

163970 The value of escape velocity on a certain planet is \(2 \mathrm{~km} / \mathrm{s}\). Then the value of orbital speed for a satellite orbiting close to its surface is :

1 \(12 \mathrm{~km} / \mathrm{s}\)
2 \(1 \mathrm{~km} / \mathrm{s}\)
3 \(\sqrt{2} \mathrm{~km} / \mathrm{s}\)
4 \(2 \sqrt{2} \mathrm{~km} / \mathrm{s}\)
5 RBTS PAPER

163971 Suppose radius of the moon's orbit around the earth is doubled. Its period around the earth will become:

1 \(1 / 2\) times
2 \(\sqrt{2}\) times
3 \(2^{2 / 3}\) times
4 \(2^{3 / 2}\) times
5 RBTS PAPER

163972 A Satellite orbits the earth at a height of \(400 \mathrm{~km}\) above the surface. How much energy must be expended to Rocket for the satellite to come out of the earth's gravitational influence, given that mass of the satellite \(=200 \mathrm{~kg}, M_e=6.0 \times 10^{24} \mathrm{~kg}\), \(R_{\mathrm{e}}=6.0 \times 10^6 \mathrm{~m} \& \mathbf{G}=6.67 \times 10^{-11} \mathrm{Nm}^2 \mathrm{Kg}^{-2}\) :

1 \(5.507 \times 10^2 \mathrm{~J}\)
2 \(5.89 \times 10^9 \mathrm{~J}\)
3 \(2.2 \times 10^4 \mathrm{~J}\)
4 \(1.2 \times 10^7 \mathrm{~J}\)
5 RBTS PAPER

163969 For a satellite moving in an orbit around the earth, the ratio of kinetic energy to potential energy is :

1 2
2 \(\frac{1}{2}\)
3 \(\frac{1}{\sqrt{2}}\)
4 \(\sqrt{2}\)
5 RBTS PAPER

163970 The value of escape velocity on a certain planet is \(2 \mathrm{~km} / \mathrm{s}\). Then the value of orbital speed for a satellite orbiting close to its surface is :

1 \(12 \mathrm{~km} / \mathrm{s}\)
2 \(1 \mathrm{~km} / \mathrm{s}\)
3 \(\sqrt{2} \mathrm{~km} / \mathrm{s}\)
4 \(2 \sqrt{2} \mathrm{~km} / \mathrm{s}\)
5 RBTS PAPER

163971 Suppose radius of the moon's orbit around the earth is doubled. Its period around the earth will become:

1 \(1 / 2\) times
2 \(\sqrt{2}\) times
3 \(2^{2 / 3}\) times
4 \(2^{3 / 2}\) times
5 RBTS PAPER

163972 A Satellite orbits the earth at a height of \(400 \mathrm{~km}\) above the surface. How much energy must be expended to Rocket for the satellite to come out of the earth's gravitational influence, given that mass of the satellite \(=200 \mathrm{~kg}, M_e=6.0 \times 10^{24} \mathrm{~kg}\), \(R_{\mathrm{e}}=6.0 \times 10^6 \mathrm{~m} \& \mathbf{G}=6.67 \times 10^{-11} \mathrm{Nm}^2 \mathrm{Kg}^{-2}\) :

1 \(5.507 \times 10^2 \mathrm{~J}\)
2 \(5.89 \times 10^9 \mathrm{~J}\)
3 \(2.2 \times 10^4 \mathrm{~J}\)
4 \(1.2 \times 10^7 \mathrm{~J}\)
5 RBTS PAPER

163969 For a satellite moving in an orbit around the earth, the ratio of kinetic energy to potential energy is :

1 2
2 \(\frac{1}{2}\)
3 \(\frac{1}{\sqrt{2}}\)
4 \(\sqrt{2}\)
5 RBTS PAPER

163970 The value of escape velocity on a certain planet is \(2 \mathrm{~km} / \mathrm{s}\). Then the value of orbital speed for a satellite orbiting close to its surface is :

1 \(12 \mathrm{~km} / \mathrm{s}\)
2 \(1 \mathrm{~km} / \mathrm{s}\)
3 \(\sqrt{2} \mathrm{~km} / \mathrm{s}\)
4 \(2 \sqrt{2} \mathrm{~km} / \mathrm{s}\)
5 RBTS PAPER

163971 Suppose radius of the moon's orbit around the earth is doubled. Its period around the earth will become:

1 \(1 / 2\) times
2 \(\sqrt{2}\) times
3 \(2^{2 / 3}\) times
4 \(2^{3 / 2}\) times
5 RBTS PAPER

163972 A Satellite orbits the earth at a height of \(400 \mathrm{~km}\) above the surface. How much energy must be expended to Rocket for the satellite to come out of the earth's gravitational influence, given that mass of the satellite \(=200 \mathrm{~kg}, M_e=6.0 \times 10^{24} \mathrm{~kg}\), \(R_{\mathrm{e}}=6.0 \times 10^6 \mathrm{~m} \& \mathbf{G}=6.67 \times 10^{-11} \mathrm{Nm}^2 \mathrm{Kg}^{-2}\) :

1 \(5.507 \times 10^2 \mathrm{~J}\)
2 \(5.89 \times 10^9 \mathrm{~J}\)
3 \(2.2 \times 10^4 \mathrm{~J}\)
4 \(1.2 \times 10^7 \mathrm{~J}\)