4 RBTS PAPER(PHYSICS)
4 RBTS PAPER

163787 Three rings each of mass \(\mathbf{M}\) and radius \(\mathbf{R}\) are arranged as shown in the figure. The moment of inertia of the system about YY' will be :

1 \(3 \mathrm{MR}^2\)
2 \(\frac{3}{2} M^2\)
3 \(5 \mathrm{MR}^2\)
4 \(\frac{7}{2} \mathrm{MR}^2\)
4 RBTS PAPER

163788 Let \(\vec{F}\) be the force acting on a particle having position vector \(\vec{r}\) and \(\vec{T}\) be the torque of this force about the origin. Then:

1 \(\vec{r} \cdot \vec{T}=0\) and \(\vec{F} \cdot \vec{T}=0\)
2 \(\vec{r} \cdot \vec{T}=0\) and \(\vec{F} \cdot \vec{T} \neq 0\)
3 \(\vec{r} \cdot \vec{T} \neq 0\) and \(\vec{F} \cdot \vec{T}=0\)
4 \(\vec{r} \cdot \vec{T} \neq 0\) and \(\vec{F} \cdot \vec{T} \neq 0\)
4 RBTS PAPER

163789 A chord of negligible mass is wound round the rim of a fly wheel of mass \(20 \mathrm{~kg}\) and radius \(20 \mathrm{~cm}\). A steady pull of \(25 \mathrm{~N}\) is applied on the cord as shown in figure. The flywheel is mounted on a horizontal axle with frictionless bearings. Find angular acceleration :

1 \(11.5 \mathrm{sec}^{-2}\)
2 \(13.65 \mathrm{sec}^{-2}\)
3 \(12.5 \mathrm{sec}^{-2}\)
4 \(10 \mathrm{sec}^{-2}\)
4 RBTS PAPER

163790 Two blocks of masses \(20 \mathrm{~kg}\) and \(5 \mathrm{~kg}\) are connected by a spring of negiligible mass and are placed on a friction less horizontal surface. An impulse gives a speed of \(20 \mathrm{~ms}^{-1}\) to the heavier block in the direction of the lighter block. Then the velocity of the centre of mass is:

1 \(16 \mathrm{~ms}^{-1}\)
2 \(10 \mathrm{~ms}^{-1}\)
3 \(12 \mathrm{~ms}^{-1}\)
4 \(8 \mathrm{~ms}^{-1}\)
4 RBTS PAPER

163787 Three rings each of mass \(\mathbf{M}\) and radius \(\mathbf{R}\) are arranged as shown in the figure. The moment of inertia of the system about YY' will be :

1 \(3 \mathrm{MR}^2\)
2 \(\frac{3}{2} M^2\)
3 \(5 \mathrm{MR}^2\)
4 \(\frac{7}{2} \mathrm{MR}^2\)
4 RBTS PAPER

163788 Let \(\vec{F}\) be the force acting on a particle having position vector \(\vec{r}\) and \(\vec{T}\) be the torque of this force about the origin. Then:

1 \(\vec{r} \cdot \vec{T}=0\) and \(\vec{F} \cdot \vec{T}=0\)
2 \(\vec{r} \cdot \vec{T}=0\) and \(\vec{F} \cdot \vec{T} \neq 0\)
3 \(\vec{r} \cdot \vec{T} \neq 0\) and \(\vec{F} \cdot \vec{T}=0\)
4 \(\vec{r} \cdot \vec{T} \neq 0\) and \(\vec{F} \cdot \vec{T} \neq 0\)
4 RBTS PAPER

163789 A chord of negligible mass is wound round the rim of a fly wheel of mass \(20 \mathrm{~kg}\) and radius \(20 \mathrm{~cm}\). A steady pull of \(25 \mathrm{~N}\) is applied on the cord as shown in figure. The flywheel is mounted on a horizontal axle with frictionless bearings. Find angular acceleration :

1 \(11.5 \mathrm{sec}^{-2}\)
2 \(13.65 \mathrm{sec}^{-2}\)
3 \(12.5 \mathrm{sec}^{-2}\)
4 \(10 \mathrm{sec}^{-2}\)
4 RBTS PAPER

163790 Two blocks of masses \(20 \mathrm{~kg}\) and \(5 \mathrm{~kg}\) are connected by a spring of negiligible mass and are placed on a friction less horizontal surface. An impulse gives a speed of \(20 \mathrm{~ms}^{-1}\) to the heavier block in the direction of the lighter block. Then the velocity of the centre of mass is:

1 \(16 \mathrm{~ms}^{-1}\)
2 \(10 \mathrm{~ms}^{-1}\)
3 \(12 \mathrm{~ms}^{-1}\)
4 \(8 \mathrm{~ms}^{-1}\)
4 RBTS PAPER

163787 Three rings each of mass \(\mathbf{M}\) and radius \(\mathbf{R}\) are arranged as shown in the figure. The moment of inertia of the system about YY' will be :

1 \(3 \mathrm{MR}^2\)
2 \(\frac{3}{2} M^2\)
3 \(5 \mathrm{MR}^2\)
4 \(\frac{7}{2} \mathrm{MR}^2\)
4 RBTS PAPER

163788 Let \(\vec{F}\) be the force acting on a particle having position vector \(\vec{r}\) and \(\vec{T}\) be the torque of this force about the origin. Then:

1 \(\vec{r} \cdot \vec{T}=0\) and \(\vec{F} \cdot \vec{T}=0\)
2 \(\vec{r} \cdot \vec{T}=0\) and \(\vec{F} \cdot \vec{T} \neq 0\)
3 \(\vec{r} \cdot \vec{T} \neq 0\) and \(\vec{F} \cdot \vec{T}=0\)
4 \(\vec{r} \cdot \vec{T} \neq 0\) and \(\vec{F} \cdot \vec{T} \neq 0\)
4 RBTS PAPER

163789 A chord of negligible mass is wound round the rim of a fly wheel of mass \(20 \mathrm{~kg}\) and radius \(20 \mathrm{~cm}\). A steady pull of \(25 \mathrm{~N}\) is applied on the cord as shown in figure. The flywheel is mounted on a horizontal axle with frictionless bearings. Find angular acceleration :

1 \(11.5 \mathrm{sec}^{-2}\)
2 \(13.65 \mathrm{sec}^{-2}\)
3 \(12.5 \mathrm{sec}^{-2}\)
4 \(10 \mathrm{sec}^{-2}\)
4 RBTS PAPER

163790 Two blocks of masses \(20 \mathrm{~kg}\) and \(5 \mathrm{~kg}\) are connected by a spring of negiligible mass and are placed on a friction less horizontal surface. An impulse gives a speed of \(20 \mathrm{~ms}^{-1}\) to the heavier block in the direction of the lighter block. Then the velocity of the centre of mass is:

1 \(16 \mathrm{~ms}^{-1}\)
2 \(10 \mathrm{~ms}^{-1}\)
3 \(12 \mathrm{~ms}^{-1}\)
4 \(8 \mathrm{~ms}^{-1}\)
4 RBTS PAPER

163787 Three rings each of mass \(\mathbf{M}\) and radius \(\mathbf{R}\) are arranged as shown in the figure. The moment of inertia of the system about YY' will be :

1 \(3 \mathrm{MR}^2\)
2 \(\frac{3}{2} M^2\)
3 \(5 \mathrm{MR}^2\)
4 \(\frac{7}{2} \mathrm{MR}^2\)
4 RBTS PAPER

163788 Let \(\vec{F}\) be the force acting on a particle having position vector \(\vec{r}\) and \(\vec{T}\) be the torque of this force about the origin. Then:

1 \(\vec{r} \cdot \vec{T}=0\) and \(\vec{F} \cdot \vec{T}=0\)
2 \(\vec{r} \cdot \vec{T}=0\) and \(\vec{F} \cdot \vec{T} \neq 0\)
3 \(\vec{r} \cdot \vec{T} \neq 0\) and \(\vec{F} \cdot \vec{T}=0\)
4 \(\vec{r} \cdot \vec{T} \neq 0\) and \(\vec{F} \cdot \vec{T} \neq 0\)
4 RBTS PAPER

163789 A chord of negligible mass is wound round the rim of a fly wheel of mass \(20 \mathrm{~kg}\) and radius \(20 \mathrm{~cm}\). A steady pull of \(25 \mathrm{~N}\) is applied on the cord as shown in figure. The flywheel is mounted on a horizontal axle with frictionless bearings. Find angular acceleration :

1 \(11.5 \mathrm{sec}^{-2}\)
2 \(13.65 \mathrm{sec}^{-2}\)
3 \(12.5 \mathrm{sec}^{-2}\)
4 \(10 \mathrm{sec}^{-2}\)
4 RBTS PAPER

163790 Two blocks of masses \(20 \mathrm{~kg}\) and \(5 \mathrm{~kg}\) are connected by a spring of negiligible mass and are placed on a friction less horizontal surface. An impulse gives a speed of \(20 \mathrm{~ms}^{-1}\) to the heavier block in the direction of the lighter block. Then the velocity of the centre of mass is:

1 \(16 \mathrm{~ms}^{-1}\)
2 \(10 \mathrm{~ms}^{-1}\)
3 \(12 \mathrm{~ms}^{-1}\)
4 \(8 \mathrm{~ms}^{-1}\)