RBTS PAPER 3(CHEMISTRY)
3 RBTS PAPER

162621 For a gaseous reaction, \(\mathrm{A}(\mathrm{g})+3 \mathrm{~B}(\mathrm{~g}) \rightarrow 3 \mathrm{C}(\mathrm{g})\) \(+3 \mathrm{D}(\mathrm{g}) \Delta \mathrm{E}\) is \(17 \mathrm{kCal}\) at \(27^{\circ} \mathrm{C}\) assuming \(R=2 \mathrm{Cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\), the value of \(\Delta \mathrm{H}\) for the above reaction is:

1 \(15.8 \mathrm{kCal}\)
2 \(18.2 \mathrm{kCal}\)
3 \(20.0 \mathrm{kCal}\)
4 \(16.4 \mathrm{kCal}\)
3 RBTS PAPER

162622 Two moles of an ideal gas expand spontaneously into vacuum. The work is :

1 Zero
2 \(2 \mathrm{~J}\)
3 \(4 \mathrm{~J}\)
4 \(8 \mathrm{~J}\)
3 RBTS PAPER

162623 One mole of a gas occupying \(3 \mathrm{dm}^3\) expands against a constant external pressure of \(1 \mathrm{~atm}\) to a volume of 13 litre. Find work :

1 \(-10 \mathrm{~atm} \mathrm{dm}^3\)
2 \(-20 \mathrm{~atm} \mathrm{dm}^3\)
3 \(-39 \mathrm{~atm} \mathrm{dm}^3\)
4 \(-48 \mathrm{~atm} \mathrm{dm} 3\)
3 RBTS PAPER

162624 The work (in ergs) for a reversible expansion of one mole of an ideal gas from a volume of 10 litres to 20 litres at \(25^{\circ} \mathrm{C}\) is :

1 \(-2.303 \times 8.314 \times 10^7 \times 298 \log 2\)
2 \(-2.303 \times 0.0821 \times 298 \log 2\)
3 \(-2.303 \times 0.0821 \times 298 \log 0.5\)
4 \(-2.303 \times 2 \times 298 \log 2\)
3 RBTS PAPER

162621 For a gaseous reaction, \(\mathrm{A}(\mathrm{g})+3 \mathrm{~B}(\mathrm{~g}) \rightarrow 3 \mathrm{C}(\mathrm{g})\) \(+3 \mathrm{D}(\mathrm{g}) \Delta \mathrm{E}\) is \(17 \mathrm{kCal}\) at \(27^{\circ} \mathrm{C}\) assuming \(R=2 \mathrm{Cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\), the value of \(\Delta \mathrm{H}\) for the above reaction is:

1 \(15.8 \mathrm{kCal}\)
2 \(18.2 \mathrm{kCal}\)
3 \(20.0 \mathrm{kCal}\)
4 \(16.4 \mathrm{kCal}\)
3 RBTS PAPER

162622 Two moles of an ideal gas expand spontaneously into vacuum. The work is :

1 Zero
2 \(2 \mathrm{~J}\)
3 \(4 \mathrm{~J}\)
4 \(8 \mathrm{~J}\)
3 RBTS PAPER

162623 One mole of a gas occupying \(3 \mathrm{dm}^3\) expands against a constant external pressure of \(1 \mathrm{~atm}\) to a volume of 13 litre. Find work :

1 \(-10 \mathrm{~atm} \mathrm{dm}^3\)
2 \(-20 \mathrm{~atm} \mathrm{dm}^3\)
3 \(-39 \mathrm{~atm} \mathrm{dm}^3\)
4 \(-48 \mathrm{~atm} \mathrm{dm} 3\)
3 RBTS PAPER

162624 The work (in ergs) for a reversible expansion of one mole of an ideal gas from a volume of 10 litres to 20 litres at \(25^{\circ} \mathrm{C}\) is :

1 \(-2.303 \times 8.314 \times 10^7 \times 298 \log 2\)
2 \(-2.303 \times 0.0821 \times 298 \log 2\)
3 \(-2.303 \times 0.0821 \times 298 \log 0.5\)
4 \(-2.303 \times 2 \times 298 \log 2\)
3 RBTS PAPER

162621 For a gaseous reaction, \(\mathrm{A}(\mathrm{g})+3 \mathrm{~B}(\mathrm{~g}) \rightarrow 3 \mathrm{C}(\mathrm{g})\) \(+3 \mathrm{D}(\mathrm{g}) \Delta \mathrm{E}\) is \(17 \mathrm{kCal}\) at \(27^{\circ} \mathrm{C}\) assuming \(R=2 \mathrm{Cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\), the value of \(\Delta \mathrm{H}\) for the above reaction is:

1 \(15.8 \mathrm{kCal}\)
2 \(18.2 \mathrm{kCal}\)
3 \(20.0 \mathrm{kCal}\)
4 \(16.4 \mathrm{kCal}\)
3 RBTS PAPER

162622 Two moles of an ideal gas expand spontaneously into vacuum. The work is :

1 Zero
2 \(2 \mathrm{~J}\)
3 \(4 \mathrm{~J}\)
4 \(8 \mathrm{~J}\)
3 RBTS PAPER

162623 One mole of a gas occupying \(3 \mathrm{dm}^3\) expands against a constant external pressure of \(1 \mathrm{~atm}\) to a volume of 13 litre. Find work :

1 \(-10 \mathrm{~atm} \mathrm{dm}^3\)
2 \(-20 \mathrm{~atm} \mathrm{dm}^3\)
3 \(-39 \mathrm{~atm} \mathrm{dm}^3\)
4 \(-48 \mathrm{~atm} \mathrm{dm} 3\)
3 RBTS PAPER

162624 The work (in ergs) for a reversible expansion of one mole of an ideal gas from a volume of 10 litres to 20 litres at \(25^{\circ} \mathrm{C}\) is :

1 \(-2.303 \times 8.314 \times 10^7 \times 298 \log 2\)
2 \(-2.303 \times 0.0821 \times 298 \log 2\)
3 \(-2.303 \times 0.0821 \times 298 \log 0.5\)
4 \(-2.303 \times 2 \times 298 \log 2\)
3 RBTS PAPER

162621 For a gaseous reaction, \(\mathrm{A}(\mathrm{g})+3 \mathrm{~B}(\mathrm{~g}) \rightarrow 3 \mathrm{C}(\mathrm{g})\) \(+3 \mathrm{D}(\mathrm{g}) \Delta \mathrm{E}\) is \(17 \mathrm{kCal}\) at \(27^{\circ} \mathrm{C}\) assuming \(R=2 \mathrm{Cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\), the value of \(\Delta \mathrm{H}\) for the above reaction is:

1 \(15.8 \mathrm{kCal}\)
2 \(18.2 \mathrm{kCal}\)
3 \(20.0 \mathrm{kCal}\)
4 \(16.4 \mathrm{kCal}\)
3 RBTS PAPER

162622 Two moles of an ideal gas expand spontaneously into vacuum. The work is :

1 Zero
2 \(2 \mathrm{~J}\)
3 \(4 \mathrm{~J}\)
4 \(8 \mathrm{~J}\)
3 RBTS PAPER

162623 One mole of a gas occupying \(3 \mathrm{dm}^3\) expands against a constant external pressure of \(1 \mathrm{~atm}\) to a volume of 13 litre. Find work :

1 \(-10 \mathrm{~atm} \mathrm{dm}^3\)
2 \(-20 \mathrm{~atm} \mathrm{dm}^3\)
3 \(-39 \mathrm{~atm} \mathrm{dm}^3\)
4 \(-48 \mathrm{~atm} \mathrm{dm} 3\)
3 RBTS PAPER

162624 The work (in ergs) for a reversible expansion of one mole of an ideal gas from a volume of 10 litres to 20 litres at \(25^{\circ} \mathrm{C}\) is :

1 \(-2.303 \times 8.314 \times 10^7 \times 298 \log 2\)
2 \(-2.303 \times 0.0821 \times 298 \log 2\)
3 \(-2.303 \times 0.0821 \times 298 \log 0.5\)
4 \(-2.303 \times 2 \times 298 \log 2\)