155509
If a source is transmitting electromagnetic wave of frequency $8.2 \times 10^{6} \mathrm{~Hz}$, then wavelength of the electromagnetic waves transmitted from the source will be
1 $36.5 \mathrm{~m}$
2 $40.5 \mathrm{~m}$
3 $42.3 \mathrm{~m}$
4 $50.9 \mathrm{~m}$
Explanation:
A Given, Frequency of wave $(\mathrm{f})=8.2 \times 10^{6} \mathrm{~Hz}$ Wavelength $(\lambda)=\frac{\mathrm{c}}{\mathrm{f}}$ $\therefore \quad \lambda=\frac{3 \times 10^{8}}{8.2 \times 10^{6}}$ $\lambda = 36.5 \mathrm{~m}$
AP EAMCET (21.09.2020) Shift-I
Electromagnetic Wave
155510
Microwaves are used in
1 TV
2 Radio transmission
3 Radar
4 Atmospheric research
Explanation:
C Microwaves have small wave length Hence, energy dispersion is very low during long distance communication. Hence, they are used in radar.
AP EAMCET (17.09.2020) Shift-I
Electromagnetic Wave
155530
An electromagnetic wave having frequency $4 \times$ $10^{14} \mathrm{~Hz}$ is passing through a small volume. The energy contained in this volume oscillates with frequency
1 $0 \mathrm{~Hz}$
2 $4 \times 10^{14} \mathrm{~Hz}$
3 $8 \times 10^{14} \mathrm{~Hz}$
4 $2 \times 10^{14} \mathrm{~Hz}$
Explanation:
C Given, Frequency of $\mathrm{EM}$ wave $=4 \times 10^{14} \mathrm{~Hz}$ Frequency of an oscillator of energy with time is twice of frequency of EM wave. $\therefore f$ of energy oscillation $=2 \times 4 \times 10^{14}$ $=8 \times 10^{14} \mathrm{~Hz}$
TS- EAMCET-05.05.2018
Electromagnetic Wave
155548
The amplitudes $E_{0}$ and $B_{0}$ of electric and the magnetic component of an electromagnetic wave respectively are related to the velocity $c$ in vacuum as
D In relation between amplitude of electric \& magnetic field is, $\mathrm{c}=\frac{\mathrm{E}_{\mathrm{o}}}{\mathrm{B}_{\mathrm{o}}}$ $\mathrm{E}_{\mathrm{o}}=\mathrm{cB}_{\mathrm{o}}$
155509
If a source is transmitting electromagnetic wave of frequency $8.2 \times 10^{6} \mathrm{~Hz}$, then wavelength of the electromagnetic waves transmitted from the source will be
1 $36.5 \mathrm{~m}$
2 $40.5 \mathrm{~m}$
3 $42.3 \mathrm{~m}$
4 $50.9 \mathrm{~m}$
Explanation:
A Given, Frequency of wave $(\mathrm{f})=8.2 \times 10^{6} \mathrm{~Hz}$ Wavelength $(\lambda)=\frac{\mathrm{c}}{\mathrm{f}}$ $\therefore \quad \lambda=\frac{3 \times 10^{8}}{8.2 \times 10^{6}}$ $\lambda = 36.5 \mathrm{~m}$
AP EAMCET (21.09.2020) Shift-I
Electromagnetic Wave
155510
Microwaves are used in
1 TV
2 Radio transmission
3 Radar
4 Atmospheric research
Explanation:
C Microwaves have small wave length Hence, energy dispersion is very low during long distance communication. Hence, they are used in radar.
AP EAMCET (17.09.2020) Shift-I
Electromagnetic Wave
155530
An electromagnetic wave having frequency $4 \times$ $10^{14} \mathrm{~Hz}$ is passing through a small volume. The energy contained in this volume oscillates with frequency
1 $0 \mathrm{~Hz}$
2 $4 \times 10^{14} \mathrm{~Hz}$
3 $8 \times 10^{14} \mathrm{~Hz}$
4 $2 \times 10^{14} \mathrm{~Hz}$
Explanation:
C Given, Frequency of $\mathrm{EM}$ wave $=4 \times 10^{14} \mathrm{~Hz}$ Frequency of an oscillator of energy with time is twice of frequency of EM wave. $\therefore f$ of energy oscillation $=2 \times 4 \times 10^{14}$ $=8 \times 10^{14} \mathrm{~Hz}$
TS- EAMCET-05.05.2018
Electromagnetic Wave
155548
The amplitudes $E_{0}$ and $B_{0}$ of electric and the magnetic component of an electromagnetic wave respectively are related to the velocity $c$ in vacuum as
D In relation between amplitude of electric \& magnetic field is, $\mathrm{c}=\frac{\mathrm{E}_{\mathrm{o}}}{\mathrm{B}_{\mathrm{o}}}$ $\mathrm{E}_{\mathrm{o}}=\mathrm{cB}_{\mathrm{o}}$
155509
If a source is transmitting electromagnetic wave of frequency $8.2 \times 10^{6} \mathrm{~Hz}$, then wavelength of the electromagnetic waves transmitted from the source will be
1 $36.5 \mathrm{~m}$
2 $40.5 \mathrm{~m}$
3 $42.3 \mathrm{~m}$
4 $50.9 \mathrm{~m}$
Explanation:
A Given, Frequency of wave $(\mathrm{f})=8.2 \times 10^{6} \mathrm{~Hz}$ Wavelength $(\lambda)=\frac{\mathrm{c}}{\mathrm{f}}$ $\therefore \quad \lambda=\frac{3 \times 10^{8}}{8.2 \times 10^{6}}$ $\lambda = 36.5 \mathrm{~m}$
AP EAMCET (21.09.2020) Shift-I
Electromagnetic Wave
155510
Microwaves are used in
1 TV
2 Radio transmission
3 Radar
4 Atmospheric research
Explanation:
C Microwaves have small wave length Hence, energy dispersion is very low during long distance communication. Hence, they are used in radar.
AP EAMCET (17.09.2020) Shift-I
Electromagnetic Wave
155530
An electromagnetic wave having frequency $4 \times$ $10^{14} \mathrm{~Hz}$ is passing through a small volume. The energy contained in this volume oscillates with frequency
1 $0 \mathrm{~Hz}$
2 $4 \times 10^{14} \mathrm{~Hz}$
3 $8 \times 10^{14} \mathrm{~Hz}$
4 $2 \times 10^{14} \mathrm{~Hz}$
Explanation:
C Given, Frequency of $\mathrm{EM}$ wave $=4 \times 10^{14} \mathrm{~Hz}$ Frequency of an oscillator of energy with time is twice of frequency of EM wave. $\therefore f$ of energy oscillation $=2 \times 4 \times 10^{14}$ $=8 \times 10^{14} \mathrm{~Hz}$
TS- EAMCET-05.05.2018
Electromagnetic Wave
155548
The amplitudes $E_{0}$ and $B_{0}$ of electric and the magnetic component of an electromagnetic wave respectively are related to the velocity $c$ in vacuum as
D In relation between amplitude of electric \& magnetic field is, $\mathrm{c}=\frac{\mathrm{E}_{\mathrm{o}}}{\mathrm{B}_{\mathrm{o}}}$ $\mathrm{E}_{\mathrm{o}}=\mathrm{cB}_{\mathrm{o}}$
155509
If a source is transmitting electromagnetic wave of frequency $8.2 \times 10^{6} \mathrm{~Hz}$, then wavelength of the electromagnetic waves transmitted from the source will be
1 $36.5 \mathrm{~m}$
2 $40.5 \mathrm{~m}$
3 $42.3 \mathrm{~m}$
4 $50.9 \mathrm{~m}$
Explanation:
A Given, Frequency of wave $(\mathrm{f})=8.2 \times 10^{6} \mathrm{~Hz}$ Wavelength $(\lambda)=\frac{\mathrm{c}}{\mathrm{f}}$ $\therefore \quad \lambda=\frac{3 \times 10^{8}}{8.2 \times 10^{6}}$ $\lambda = 36.5 \mathrm{~m}$
AP EAMCET (21.09.2020) Shift-I
Electromagnetic Wave
155510
Microwaves are used in
1 TV
2 Radio transmission
3 Radar
4 Atmospheric research
Explanation:
C Microwaves have small wave length Hence, energy dispersion is very low during long distance communication. Hence, they are used in radar.
AP EAMCET (17.09.2020) Shift-I
Electromagnetic Wave
155530
An electromagnetic wave having frequency $4 \times$ $10^{14} \mathrm{~Hz}$ is passing through a small volume. The energy contained in this volume oscillates with frequency
1 $0 \mathrm{~Hz}$
2 $4 \times 10^{14} \mathrm{~Hz}$
3 $8 \times 10^{14} \mathrm{~Hz}$
4 $2 \times 10^{14} \mathrm{~Hz}$
Explanation:
C Given, Frequency of $\mathrm{EM}$ wave $=4 \times 10^{14} \mathrm{~Hz}$ Frequency of an oscillator of energy with time is twice of frequency of EM wave. $\therefore f$ of energy oscillation $=2 \times 4 \times 10^{14}$ $=8 \times 10^{14} \mathrm{~Hz}$
TS- EAMCET-05.05.2018
Electromagnetic Wave
155548
The amplitudes $E_{0}$ and $B_{0}$ of electric and the magnetic component of an electromagnetic wave respectively are related to the velocity $c$ in vacuum as
D In relation between amplitude of electric \& magnetic field is, $\mathrm{c}=\frac{\mathrm{E}_{\mathrm{o}}}{\mathrm{B}_{\mathrm{o}}}$ $\mathrm{E}_{\mathrm{o}}=\mathrm{cB}_{\mathrm{o}}$