Semiconductor Electronics Material Devices and Simple Circuits
151335
Which logic produce 'LOW' output when any of the inputs is 'HIGH'?
1 AND
2 OR
3 NAND
4 NOR
Explanation:
D When any of the input is high the output will be low, The truth table for NOR gate is \(\mathrm{y}=\overline{\mathrm{A}+\mathrm{B}}\) {|c|c|c|} | \(\) \(\) \(\)\)| |---| \( 0 0 1\) \(0 1 0\) \(1 0 0\) \(1 1 0\) \( Therefore, NOR gate is the logic gate which produces low output when any of the input is high.
MHT-CET 2015
Semiconductor Electronics Material Devices and Simple Circuits
151336
The output \((X)\) of the logic circuit shown in figure will be
C Given logic circuit is- Then Boolean expression will be, \(\mathrm{X}=\overline{\overline{\mathrm{A} \cdot \mathrm{B}}}\) \(\mathrm{X}=\mathrm{A} \cdot \mathrm{B}\) \((\because \overline{\overline{\mathrm{A}}}=\mathrm{A})\)which shows AND gate so option (c) is correct
MHT-CET 2013
Semiconductor Electronics Material Devices and Simple Circuits
151338
Which of the following gates will have an output of 1 ?
1 \(\mathrm{D}\)
2 \(\mathrm{A}\)
3 \(\mathrm{B}\)
4 \(\mathrm{C}\)
Explanation:
D For given circuit the output will be 1, which shows NAND gate so, Boolean expression, \(\mathrm{y}=\overline{\mathrm{A} \cdot \mathrm{B}} \Rightarrow \overline{0.1}=\overline{0}=1\) \(\mathrm{y}=1\)So, option (d) correct,
VITEEE-2019
Semiconductor Electronics Material Devices and Simple Circuits
151339
The given electrical network is equivalent to
1 OR gate
2 NOR gate
3 NOT gate
4 AND gate
Explanation:
B Given electrical circuit is Then Boolean expression will be \(\mathrm{y}=\overline{\overline{\overline{\mathrm{A}+\mathrm{B}}}}\) \(\mathrm{y}=\overline{\mathrm{A}+\mathrm{B}}\) \(\{\overline{\overline{\mathrm{A}}}=\mathrm{A}\}\)which represents NOR gate, Option (b) is correct,
VITEEE-2018
Semiconductor Electronics Material Devices and Simple Circuits
151340
To get an output \(\mathbf{y}=\mathbf{0}\) from the circuit shown in the figure, the input \(C\) must be
1 0
2 1
3 either 0 or 1
4 None of these
Explanation:
B Given combination of logic circuit when output, \(\mathrm{y}=0\) Then, Then the Boolean expression, \(\mathrm{y}=(\mathrm{A}+\mathrm{B}) . \mathrm{C}\) If output is 0 (zero) then \(C\) must be equal to 0 (zero). So, option (a) is correct.
Semiconductor Electronics Material Devices and Simple Circuits
151335
Which logic produce 'LOW' output when any of the inputs is 'HIGH'?
1 AND
2 OR
3 NAND
4 NOR
Explanation:
D When any of the input is high the output will be low, The truth table for NOR gate is \(\mathrm{y}=\overline{\mathrm{A}+\mathrm{B}}\) {|c|c|c|} | \(\) \(\) \(\)\)| |---| \( 0 0 1\) \(0 1 0\) \(1 0 0\) \(1 1 0\) \( Therefore, NOR gate is the logic gate which produces low output when any of the input is high.
MHT-CET 2015
Semiconductor Electronics Material Devices and Simple Circuits
151336
The output \((X)\) of the logic circuit shown in figure will be
C Given logic circuit is- Then Boolean expression will be, \(\mathrm{X}=\overline{\overline{\mathrm{A} \cdot \mathrm{B}}}\) \(\mathrm{X}=\mathrm{A} \cdot \mathrm{B}\) \((\because \overline{\overline{\mathrm{A}}}=\mathrm{A})\)which shows AND gate so option (c) is correct
MHT-CET 2013
Semiconductor Electronics Material Devices and Simple Circuits
151338
Which of the following gates will have an output of 1 ?
1 \(\mathrm{D}\)
2 \(\mathrm{A}\)
3 \(\mathrm{B}\)
4 \(\mathrm{C}\)
Explanation:
D For given circuit the output will be 1, which shows NAND gate so, Boolean expression, \(\mathrm{y}=\overline{\mathrm{A} \cdot \mathrm{B}} \Rightarrow \overline{0.1}=\overline{0}=1\) \(\mathrm{y}=1\)So, option (d) correct,
VITEEE-2019
Semiconductor Electronics Material Devices and Simple Circuits
151339
The given electrical network is equivalent to
1 OR gate
2 NOR gate
3 NOT gate
4 AND gate
Explanation:
B Given electrical circuit is Then Boolean expression will be \(\mathrm{y}=\overline{\overline{\overline{\mathrm{A}+\mathrm{B}}}}\) \(\mathrm{y}=\overline{\mathrm{A}+\mathrm{B}}\) \(\{\overline{\overline{\mathrm{A}}}=\mathrm{A}\}\)which represents NOR gate, Option (b) is correct,
VITEEE-2018
Semiconductor Electronics Material Devices and Simple Circuits
151340
To get an output \(\mathbf{y}=\mathbf{0}\) from the circuit shown in the figure, the input \(C\) must be
1 0
2 1
3 either 0 or 1
4 None of these
Explanation:
B Given combination of logic circuit when output, \(\mathrm{y}=0\) Then, Then the Boolean expression, \(\mathrm{y}=(\mathrm{A}+\mathrm{B}) . \mathrm{C}\) If output is 0 (zero) then \(C\) must be equal to 0 (zero). So, option (a) is correct.
Semiconductor Electronics Material Devices and Simple Circuits
151335
Which logic produce 'LOW' output when any of the inputs is 'HIGH'?
1 AND
2 OR
3 NAND
4 NOR
Explanation:
D When any of the input is high the output will be low, The truth table for NOR gate is \(\mathrm{y}=\overline{\mathrm{A}+\mathrm{B}}\) {|c|c|c|} | \(\) \(\) \(\)\)| |---| \( 0 0 1\) \(0 1 0\) \(1 0 0\) \(1 1 0\) \( Therefore, NOR gate is the logic gate which produces low output when any of the input is high.
MHT-CET 2015
Semiconductor Electronics Material Devices and Simple Circuits
151336
The output \((X)\) of the logic circuit shown in figure will be
C Given logic circuit is- Then Boolean expression will be, \(\mathrm{X}=\overline{\overline{\mathrm{A} \cdot \mathrm{B}}}\) \(\mathrm{X}=\mathrm{A} \cdot \mathrm{B}\) \((\because \overline{\overline{\mathrm{A}}}=\mathrm{A})\)which shows AND gate so option (c) is correct
MHT-CET 2013
Semiconductor Electronics Material Devices and Simple Circuits
151338
Which of the following gates will have an output of 1 ?
1 \(\mathrm{D}\)
2 \(\mathrm{A}\)
3 \(\mathrm{B}\)
4 \(\mathrm{C}\)
Explanation:
D For given circuit the output will be 1, which shows NAND gate so, Boolean expression, \(\mathrm{y}=\overline{\mathrm{A} \cdot \mathrm{B}} \Rightarrow \overline{0.1}=\overline{0}=1\) \(\mathrm{y}=1\)So, option (d) correct,
VITEEE-2019
Semiconductor Electronics Material Devices and Simple Circuits
151339
The given electrical network is equivalent to
1 OR gate
2 NOR gate
3 NOT gate
4 AND gate
Explanation:
B Given electrical circuit is Then Boolean expression will be \(\mathrm{y}=\overline{\overline{\overline{\mathrm{A}+\mathrm{B}}}}\) \(\mathrm{y}=\overline{\mathrm{A}+\mathrm{B}}\) \(\{\overline{\overline{\mathrm{A}}}=\mathrm{A}\}\)which represents NOR gate, Option (b) is correct,
VITEEE-2018
Semiconductor Electronics Material Devices and Simple Circuits
151340
To get an output \(\mathbf{y}=\mathbf{0}\) from the circuit shown in the figure, the input \(C\) must be
1 0
2 1
3 either 0 or 1
4 None of these
Explanation:
B Given combination of logic circuit when output, \(\mathrm{y}=0\) Then, Then the Boolean expression, \(\mathrm{y}=(\mathrm{A}+\mathrm{B}) . \mathrm{C}\) If output is 0 (zero) then \(C\) must be equal to 0 (zero). So, option (a) is correct.
Semiconductor Electronics Material Devices and Simple Circuits
151335
Which logic produce 'LOW' output when any of the inputs is 'HIGH'?
1 AND
2 OR
3 NAND
4 NOR
Explanation:
D When any of the input is high the output will be low, The truth table for NOR gate is \(\mathrm{y}=\overline{\mathrm{A}+\mathrm{B}}\) {|c|c|c|} | \(\) \(\) \(\)\)| |---| \( 0 0 1\) \(0 1 0\) \(1 0 0\) \(1 1 0\) \( Therefore, NOR gate is the logic gate which produces low output when any of the input is high.
MHT-CET 2015
Semiconductor Electronics Material Devices and Simple Circuits
151336
The output \((X)\) of the logic circuit shown in figure will be
C Given logic circuit is- Then Boolean expression will be, \(\mathrm{X}=\overline{\overline{\mathrm{A} \cdot \mathrm{B}}}\) \(\mathrm{X}=\mathrm{A} \cdot \mathrm{B}\) \((\because \overline{\overline{\mathrm{A}}}=\mathrm{A})\)which shows AND gate so option (c) is correct
MHT-CET 2013
Semiconductor Electronics Material Devices and Simple Circuits
151338
Which of the following gates will have an output of 1 ?
1 \(\mathrm{D}\)
2 \(\mathrm{A}\)
3 \(\mathrm{B}\)
4 \(\mathrm{C}\)
Explanation:
D For given circuit the output will be 1, which shows NAND gate so, Boolean expression, \(\mathrm{y}=\overline{\mathrm{A} \cdot \mathrm{B}} \Rightarrow \overline{0.1}=\overline{0}=1\) \(\mathrm{y}=1\)So, option (d) correct,
VITEEE-2019
Semiconductor Electronics Material Devices and Simple Circuits
151339
The given electrical network is equivalent to
1 OR gate
2 NOR gate
3 NOT gate
4 AND gate
Explanation:
B Given electrical circuit is Then Boolean expression will be \(\mathrm{y}=\overline{\overline{\overline{\mathrm{A}+\mathrm{B}}}}\) \(\mathrm{y}=\overline{\mathrm{A}+\mathrm{B}}\) \(\{\overline{\overline{\mathrm{A}}}=\mathrm{A}\}\)which represents NOR gate, Option (b) is correct,
VITEEE-2018
Semiconductor Electronics Material Devices and Simple Circuits
151340
To get an output \(\mathbf{y}=\mathbf{0}\) from the circuit shown in the figure, the input \(C\) must be
1 0
2 1
3 either 0 or 1
4 None of these
Explanation:
B Given combination of logic circuit when output, \(\mathrm{y}=0\) Then, Then the Boolean expression, \(\mathrm{y}=(\mathrm{A}+\mathrm{B}) . \mathrm{C}\) If output is 0 (zero) then \(C\) must be equal to 0 (zero). So, option (a) is correct.
Semiconductor Electronics Material Devices and Simple Circuits
151335
Which logic produce 'LOW' output when any of the inputs is 'HIGH'?
1 AND
2 OR
3 NAND
4 NOR
Explanation:
D When any of the input is high the output will be low, The truth table for NOR gate is \(\mathrm{y}=\overline{\mathrm{A}+\mathrm{B}}\) {|c|c|c|} | \(\) \(\) \(\)\)| |---| \( 0 0 1\) \(0 1 0\) \(1 0 0\) \(1 1 0\) \( Therefore, NOR gate is the logic gate which produces low output when any of the input is high.
MHT-CET 2015
Semiconductor Electronics Material Devices and Simple Circuits
151336
The output \((X)\) of the logic circuit shown in figure will be
C Given logic circuit is- Then Boolean expression will be, \(\mathrm{X}=\overline{\overline{\mathrm{A} \cdot \mathrm{B}}}\) \(\mathrm{X}=\mathrm{A} \cdot \mathrm{B}\) \((\because \overline{\overline{\mathrm{A}}}=\mathrm{A})\)which shows AND gate so option (c) is correct
MHT-CET 2013
Semiconductor Electronics Material Devices and Simple Circuits
151338
Which of the following gates will have an output of 1 ?
1 \(\mathrm{D}\)
2 \(\mathrm{A}\)
3 \(\mathrm{B}\)
4 \(\mathrm{C}\)
Explanation:
D For given circuit the output will be 1, which shows NAND gate so, Boolean expression, \(\mathrm{y}=\overline{\mathrm{A} \cdot \mathrm{B}} \Rightarrow \overline{0.1}=\overline{0}=1\) \(\mathrm{y}=1\)So, option (d) correct,
VITEEE-2019
Semiconductor Electronics Material Devices and Simple Circuits
151339
The given electrical network is equivalent to
1 OR gate
2 NOR gate
3 NOT gate
4 AND gate
Explanation:
B Given electrical circuit is Then Boolean expression will be \(\mathrm{y}=\overline{\overline{\overline{\mathrm{A}+\mathrm{B}}}}\) \(\mathrm{y}=\overline{\mathrm{A}+\mathrm{B}}\) \(\{\overline{\overline{\mathrm{A}}}=\mathrm{A}\}\)which represents NOR gate, Option (b) is correct,
VITEEE-2018
Semiconductor Electronics Material Devices and Simple Circuits
151340
To get an output \(\mathbf{y}=\mathbf{0}\) from the circuit shown in the figure, the input \(C\) must be
1 0
2 1
3 either 0 or 1
4 None of these
Explanation:
B Given combination of logic circuit when output, \(\mathrm{y}=0\) Then, Then the Boolean expression, \(\mathrm{y}=(\mathrm{A}+\mathrm{B}) . \mathrm{C}\) If output is 0 (zero) then \(C\) must be equal to 0 (zero). So, option (a) is correct.