Semiconductor Electronics Material Devices and Simple Circuits
151027
If \(\alpha\) and \(\beta\) are the current gain in the \(C B\) and CE configuration respectively of the transistor circuit, then \(\frac{\beta-\alpha}{\alpha \beta}=\)
1 infinite
2 1
3 2
4 0.5
Explanation:
B We know that, \(\beta=\frac{\alpha}{1-\alpha}\) Multiply both side by \(\alpha\), \(\alpha \beta=\frac{\alpha^2}{1-\alpha}\) Subtract \(\alpha\) from both side in equation (i), \(\beta-\alpha=\frac{\alpha}{1-\alpha}-\alpha\) \(\beta-\alpha=\frac{\alpha^2}{1-\alpha}\) From equation (ii) and equation (iii), we get - \(\beta-\alpha=\alpha \beta\) \(\frac{\beta-\alpha}{\alpha \beta}=1\)
MHT-CET 2020
Semiconductor Electronics Material Devices and Simple Circuits
151033
In a p-n-p transistor working as a common base amplifier, when the current gain is 0.96 and emitter current is \(7.2 \mathrm{~mA}\), the base current is
1 \(0.4 \mathrm{~mA}\)
2 \(0.2 \mathrm{~mA}\)
3 \(0.29 \mathrm{~mA}\)
4 \(0.35 \mathrm{~mA}\)
Explanation:
C Given, Current gain \((\alpha)=0.96\) Emitter current \(\left(\mathrm{I}_{\mathrm{E}}\right)=7.2 \mathrm{~mA}\) Base current, \(\mathrm{I}_{\mathrm{B}}=\) ? We know that, \(\alpha =\frac{I_C}{I_E}=0.96\) \(I_C =\alpha \times I_E\) \(I_C =0.96 \times 7.2\) \(I_C =6.912 m A\) \(I_E =I_C+I_B\) \(I_B =I_E-I_C\) \(=7.2-6.912\) \(I_B =0.288 \approx 0.29 \mathrm{~mA}\)
AP EAMCET (17.09.2020) Shift-II
Semiconductor Electronics Material Devices and Simple Circuits
151034
In the following common-emitter circuit, \(\beta=\) 100 and \(V_{C E}=7 V\). If \(V_{B E}\) is negligible, then the base current is
Semiconductor Electronics Material Devices and Simple Circuits
151035
In a transistor, the value of \(\alpha\) varies between \(\frac{20}{21}\) and \(\frac{100}{101}\). Then the value of \(\beta\) varies between
1 1 and 10
2 0.95 and 0.99
3 20 and 100
4 200 and 300
Explanation:
C Given, \(\alpha=\frac{20}{21} \& \frac{100}{101}\) \(\beta=\frac{\alpha}{1-\alpha}\) Case I. if \(\alpha=\frac{20}{21}\) Then, \(\beta=\frac{20 / 21}{1-20 / 21}=\frac{20}{21-20}=20\) Case II if \(\alpha=\frac{100}{101}\) Then, \(\beta=\frac{100 / 101}{1-100 / 101}=\frac{100}{101-100}=100\)\(\therefore\) Hence, the value of \(\beta\) varies between \(20 \& 100\).
Semiconductor Electronics Material Devices and Simple Circuits
151027
If \(\alpha\) and \(\beta\) are the current gain in the \(C B\) and CE configuration respectively of the transistor circuit, then \(\frac{\beta-\alpha}{\alpha \beta}=\)
1 infinite
2 1
3 2
4 0.5
Explanation:
B We know that, \(\beta=\frac{\alpha}{1-\alpha}\) Multiply both side by \(\alpha\), \(\alpha \beta=\frac{\alpha^2}{1-\alpha}\) Subtract \(\alpha\) from both side in equation (i), \(\beta-\alpha=\frac{\alpha}{1-\alpha}-\alpha\) \(\beta-\alpha=\frac{\alpha^2}{1-\alpha}\) From equation (ii) and equation (iii), we get - \(\beta-\alpha=\alpha \beta\) \(\frac{\beta-\alpha}{\alpha \beta}=1\)
MHT-CET 2020
Semiconductor Electronics Material Devices and Simple Circuits
151033
In a p-n-p transistor working as a common base amplifier, when the current gain is 0.96 and emitter current is \(7.2 \mathrm{~mA}\), the base current is
1 \(0.4 \mathrm{~mA}\)
2 \(0.2 \mathrm{~mA}\)
3 \(0.29 \mathrm{~mA}\)
4 \(0.35 \mathrm{~mA}\)
Explanation:
C Given, Current gain \((\alpha)=0.96\) Emitter current \(\left(\mathrm{I}_{\mathrm{E}}\right)=7.2 \mathrm{~mA}\) Base current, \(\mathrm{I}_{\mathrm{B}}=\) ? We know that, \(\alpha =\frac{I_C}{I_E}=0.96\) \(I_C =\alpha \times I_E\) \(I_C =0.96 \times 7.2\) \(I_C =6.912 m A\) \(I_E =I_C+I_B\) \(I_B =I_E-I_C\) \(=7.2-6.912\) \(I_B =0.288 \approx 0.29 \mathrm{~mA}\)
AP EAMCET (17.09.2020) Shift-II
Semiconductor Electronics Material Devices and Simple Circuits
151034
In the following common-emitter circuit, \(\beta=\) 100 and \(V_{C E}=7 V\). If \(V_{B E}\) is negligible, then the base current is
Semiconductor Electronics Material Devices and Simple Circuits
151035
In a transistor, the value of \(\alpha\) varies between \(\frac{20}{21}\) and \(\frac{100}{101}\). Then the value of \(\beta\) varies between
1 1 and 10
2 0.95 and 0.99
3 20 and 100
4 200 and 300
Explanation:
C Given, \(\alpha=\frac{20}{21} \& \frac{100}{101}\) \(\beta=\frac{\alpha}{1-\alpha}\) Case I. if \(\alpha=\frac{20}{21}\) Then, \(\beta=\frac{20 / 21}{1-20 / 21}=\frac{20}{21-20}=20\) Case II if \(\alpha=\frac{100}{101}\) Then, \(\beta=\frac{100 / 101}{1-100 / 101}=\frac{100}{101-100}=100\)\(\therefore\) Hence, the value of \(\beta\) varies between \(20 \& 100\).
Semiconductor Electronics Material Devices and Simple Circuits
151027
If \(\alpha\) and \(\beta\) are the current gain in the \(C B\) and CE configuration respectively of the transistor circuit, then \(\frac{\beta-\alpha}{\alpha \beta}=\)
1 infinite
2 1
3 2
4 0.5
Explanation:
B We know that, \(\beta=\frac{\alpha}{1-\alpha}\) Multiply both side by \(\alpha\), \(\alpha \beta=\frac{\alpha^2}{1-\alpha}\) Subtract \(\alpha\) from both side in equation (i), \(\beta-\alpha=\frac{\alpha}{1-\alpha}-\alpha\) \(\beta-\alpha=\frac{\alpha^2}{1-\alpha}\) From equation (ii) and equation (iii), we get - \(\beta-\alpha=\alpha \beta\) \(\frac{\beta-\alpha}{\alpha \beta}=1\)
MHT-CET 2020
Semiconductor Electronics Material Devices and Simple Circuits
151033
In a p-n-p transistor working as a common base amplifier, when the current gain is 0.96 and emitter current is \(7.2 \mathrm{~mA}\), the base current is
1 \(0.4 \mathrm{~mA}\)
2 \(0.2 \mathrm{~mA}\)
3 \(0.29 \mathrm{~mA}\)
4 \(0.35 \mathrm{~mA}\)
Explanation:
C Given, Current gain \((\alpha)=0.96\) Emitter current \(\left(\mathrm{I}_{\mathrm{E}}\right)=7.2 \mathrm{~mA}\) Base current, \(\mathrm{I}_{\mathrm{B}}=\) ? We know that, \(\alpha =\frac{I_C}{I_E}=0.96\) \(I_C =\alpha \times I_E\) \(I_C =0.96 \times 7.2\) \(I_C =6.912 m A\) \(I_E =I_C+I_B\) \(I_B =I_E-I_C\) \(=7.2-6.912\) \(I_B =0.288 \approx 0.29 \mathrm{~mA}\)
AP EAMCET (17.09.2020) Shift-II
Semiconductor Electronics Material Devices and Simple Circuits
151034
In the following common-emitter circuit, \(\beta=\) 100 and \(V_{C E}=7 V\). If \(V_{B E}\) is negligible, then the base current is
Semiconductor Electronics Material Devices and Simple Circuits
151035
In a transistor, the value of \(\alpha\) varies between \(\frac{20}{21}\) and \(\frac{100}{101}\). Then the value of \(\beta\) varies between
1 1 and 10
2 0.95 and 0.99
3 20 and 100
4 200 and 300
Explanation:
C Given, \(\alpha=\frac{20}{21} \& \frac{100}{101}\) \(\beta=\frac{\alpha}{1-\alpha}\) Case I. if \(\alpha=\frac{20}{21}\) Then, \(\beta=\frac{20 / 21}{1-20 / 21}=\frac{20}{21-20}=20\) Case II if \(\alpha=\frac{100}{101}\) Then, \(\beta=\frac{100 / 101}{1-100 / 101}=\frac{100}{101-100}=100\)\(\therefore\) Hence, the value of \(\beta\) varies between \(20 \& 100\).
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
Semiconductor Electronics Material Devices and Simple Circuits
151027
If \(\alpha\) and \(\beta\) are the current gain in the \(C B\) and CE configuration respectively of the transistor circuit, then \(\frac{\beta-\alpha}{\alpha \beta}=\)
1 infinite
2 1
3 2
4 0.5
Explanation:
B We know that, \(\beta=\frac{\alpha}{1-\alpha}\) Multiply both side by \(\alpha\), \(\alpha \beta=\frac{\alpha^2}{1-\alpha}\) Subtract \(\alpha\) from both side in equation (i), \(\beta-\alpha=\frac{\alpha}{1-\alpha}-\alpha\) \(\beta-\alpha=\frac{\alpha^2}{1-\alpha}\) From equation (ii) and equation (iii), we get - \(\beta-\alpha=\alpha \beta\) \(\frac{\beta-\alpha}{\alpha \beta}=1\)
MHT-CET 2020
Semiconductor Electronics Material Devices and Simple Circuits
151033
In a p-n-p transistor working as a common base amplifier, when the current gain is 0.96 and emitter current is \(7.2 \mathrm{~mA}\), the base current is
1 \(0.4 \mathrm{~mA}\)
2 \(0.2 \mathrm{~mA}\)
3 \(0.29 \mathrm{~mA}\)
4 \(0.35 \mathrm{~mA}\)
Explanation:
C Given, Current gain \((\alpha)=0.96\) Emitter current \(\left(\mathrm{I}_{\mathrm{E}}\right)=7.2 \mathrm{~mA}\) Base current, \(\mathrm{I}_{\mathrm{B}}=\) ? We know that, \(\alpha =\frac{I_C}{I_E}=0.96\) \(I_C =\alpha \times I_E\) \(I_C =0.96 \times 7.2\) \(I_C =6.912 m A\) \(I_E =I_C+I_B\) \(I_B =I_E-I_C\) \(=7.2-6.912\) \(I_B =0.288 \approx 0.29 \mathrm{~mA}\)
AP EAMCET (17.09.2020) Shift-II
Semiconductor Electronics Material Devices and Simple Circuits
151034
In the following common-emitter circuit, \(\beta=\) 100 and \(V_{C E}=7 V\). If \(V_{B E}\) is negligible, then the base current is
Semiconductor Electronics Material Devices and Simple Circuits
151035
In a transistor, the value of \(\alpha\) varies between \(\frac{20}{21}\) and \(\frac{100}{101}\). Then the value of \(\beta\) varies between
1 1 and 10
2 0.95 and 0.99
3 20 and 100
4 200 and 300
Explanation:
C Given, \(\alpha=\frac{20}{21} \& \frac{100}{101}\) \(\beta=\frac{\alpha}{1-\alpha}\) Case I. if \(\alpha=\frac{20}{21}\) Then, \(\beta=\frac{20 / 21}{1-20 / 21}=\frac{20}{21-20}=20\) Case II if \(\alpha=\frac{100}{101}\) Then, \(\beta=\frac{100 / 101}{1-100 / 101}=\frac{100}{101-100}=100\)\(\therefore\) Hence, the value of \(\beta\) varies between \(20 \& 100\).